Answer :
Let's tackle each part of the problem one by one with detailed and clear explanations.
### Part (a)
The expression to evaluate is:
[tex]\[ 23437 + 11542 - 11398 \][/tex]
First, add [tex]\( 23437 \)[/tex] and [tex]\( 11542 \)[/tex]:
[tex]\[ 23437 + 11542 = 34979 \][/tex]
Next, subtract [tex]\( 11398 \)[/tex] from [tex]\( 34979 \)[/tex]:
[tex]\[ 34979 - 11398 = 23581 \][/tex]
So, the result for part (a) is:
[tex]\[ 23581 \][/tex]
### Part (b)
The expression to evaluate is:
[tex]\[ 37315 - 14782 + 21508 \][/tex]
First, subtract [tex]\( 14782 \)[/tex] from [tex]\( 37315 \)[/tex]:
[tex]\[ 37315 - 14782 = 22533 \][/tex]
Next, add [tex]\( 22533 \)[/tex] and [tex]\( 21508 \)[/tex]:
[tex]\[ 22533 + 21508 = 44041 \][/tex]
So, the result for part (b) is:
[tex]\[ 44041 \][/tex]
### Part (c)
The expression to evaluate is:
[tex]\[ 70000 - 23816 + 11429 \][/tex]
First, subtract [tex]\( 23816 \)[/tex] from [tex]\( 70000 \)[/tex]:
[tex]\[ 70000 - 23816 = 46184 \][/tex]
Next, add [tex]\( 46184 \)[/tex] and [tex]\( 11429 \)[/tex]:
[tex]\[ 46184 + 11429 = 57613 \][/tex]
So, the result for part (c) is:
[tex]\[ 57613 \][/tex]
### Part (d)
The expression to evaluate is:
[tex]\[ 400000 + 38634 - 233547 \][/tex]
First, add [tex]\( 400000 \)[/tex] and [tex]\( 38634 \)[/tex]:
[tex]\[ 400000 + 38634 = 438634 \][/tex]
Next, subtract [tex]\( 233547 \)[/tex] from [tex]\( 438634 \)[/tex]:
[tex]\[ 438634 - 233547 = 205087 \][/tex]
So, the result for part (d) is:
[tex]\[ 205087 \][/tex]
### Part (e)
The expression to evaluate is:
[tex]\[ 188350 - 96805 - 27978 \][/tex]
First, subtract [tex]\( 96805 \)[/tex] from [tex]\( 188350 \)[/tex]:
[tex]\[ 188350 - 96805 = 91545 \][/tex]
Next, subtract [tex]\( 27978 \)[/tex] from [tex]\( 91545 \)[/tex]:
[tex]\[ 91545 - 27978 = 63567 \][/tex]
So, the result for part (e) is:
[tex]\[ 63567 \][/tex]
### Part (f)
The expression to evaluate is:
[tex]\[ 681359 - 49979 + 312648 \][/tex]
First, subtract [tex]\( 49979 \)[/tex] from [tex]\( 681359 \)[/tex]:
[tex]\[ 681359 - 49979 = 631380 \][/tex]
Next, add [tex]\( 631380 \)[/tex] and [tex]\( 312648 \)[/tex]:
[tex]\[ 631380 + 312648 = 944028 \][/tex]
So, the result for part (f) is:
[tex]\[ 944028 \][/tex]
### Question 2
We need to find the difference in the number of people between the first and third day of the cricket match.
- Number of people on the first day: [tex]\( 84600 \)[/tex]
- Number of people on the second day: [tex]\( 66875 \)[/tex]
- Number of people on the third day: [tex]\( 66875 + 22605 \)[/tex]
First, calculate the number of people on the third day:
[tex]\[ 66875 + 22605 = 89480 \][/tex]
Next, find the difference between the number of people on the first and third day:
[tex]\[ 84600 - 89480 = -4880 \][/tex]
So, the difference in the number of people between the first and third day is:
[tex]\[ -4880 \][/tex]
This negative result indicates that there were [tex]\( 4880 \)[/tex] fewer people on the third day than on the first day.
### Part (a)
The expression to evaluate is:
[tex]\[ 23437 + 11542 - 11398 \][/tex]
First, add [tex]\( 23437 \)[/tex] and [tex]\( 11542 \)[/tex]:
[tex]\[ 23437 + 11542 = 34979 \][/tex]
Next, subtract [tex]\( 11398 \)[/tex] from [tex]\( 34979 \)[/tex]:
[tex]\[ 34979 - 11398 = 23581 \][/tex]
So, the result for part (a) is:
[tex]\[ 23581 \][/tex]
### Part (b)
The expression to evaluate is:
[tex]\[ 37315 - 14782 + 21508 \][/tex]
First, subtract [tex]\( 14782 \)[/tex] from [tex]\( 37315 \)[/tex]:
[tex]\[ 37315 - 14782 = 22533 \][/tex]
Next, add [tex]\( 22533 \)[/tex] and [tex]\( 21508 \)[/tex]:
[tex]\[ 22533 + 21508 = 44041 \][/tex]
So, the result for part (b) is:
[tex]\[ 44041 \][/tex]
### Part (c)
The expression to evaluate is:
[tex]\[ 70000 - 23816 + 11429 \][/tex]
First, subtract [tex]\( 23816 \)[/tex] from [tex]\( 70000 \)[/tex]:
[tex]\[ 70000 - 23816 = 46184 \][/tex]
Next, add [tex]\( 46184 \)[/tex] and [tex]\( 11429 \)[/tex]:
[tex]\[ 46184 + 11429 = 57613 \][/tex]
So, the result for part (c) is:
[tex]\[ 57613 \][/tex]
### Part (d)
The expression to evaluate is:
[tex]\[ 400000 + 38634 - 233547 \][/tex]
First, add [tex]\( 400000 \)[/tex] and [tex]\( 38634 \)[/tex]:
[tex]\[ 400000 + 38634 = 438634 \][/tex]
Next, subtract [tex]\( 233547 \)[/tex] from [tex]\( 438634 \)[/tex]:
[tex]\[ 438634 - 233547 = 205087 \][/tex]
So, the result for part (d) is:
[tex]\[ 205087 \][/tex]
### Part (e)
The expression to evaluate is:
[tex]\[ 188350 - 96805 - 27978 \][/tex]
First, subtract [tex]\( 96805 \)[/tex] from [tex]\( 188350 \)[/tex]:
[tex]\[ 188350 - 96805 = 91545 \][/tex]
Next, subtract [tex]\( 27978 \)[/tex] from [tex]\( 91545 \)[/tex]:
[tex]\[ 91545 - 27978 = 63567 \][/tex]
So, the result for part (e) is:
[tex]\[ 63567 \][/tex]
### Part (f)
The expression to evaluate is:
[tex]\[ 681359 - 49979 + 312648 \][/tex]
First, subtract [tex]\( 49979 \)[/tex] from [tex]\( 681359 \)[/tex]:
[tex]\[ 681359 - 49979 = 631380 \][/tex]
Next, add [tex]\( 631380 \)[/tex] and [tex]\( 312648 \)[/tex]:
[tex]\[ 631380 + 312648 = 944028 \][/tex]
So, the result for part (f) is:
[tex]\[ 944028 \][/tex]
### Question 2
We need to find the difference in the number of people between the first and third day of the cricket match.
- Number of people on the first day: [tex]\( 84600 \)[/tex]
- Number of people on the second day: [tex]\( 66875 \)[/tex]
- Number of people on the third day: [tex]\( 66875 + 22605 \)[/tex]
First, calculate the number of people on the third day:
[tex]\[ 66875 + 22605 = 89480 \][/tex]
Next, find the difference between the number of people on the first and third day:
[tex]\[ 84600 - 89480 = -4880 \][/tex]
So, the difference in the number of people between the first and third day is:
[tex]\[ -4880 \][/tex]
This negative result indicates that there were [tex]\( 4880 \)[/tex] fewer people on the third day than on the first day.