[tex]\( A \)[/tex] and [tex]\( B \)[/tex] share profit and loss equally. [tex]\( C \)[/tex] is admitted for a [tex]\(\frac{1}{6}\)[/tex] share, half of which is given by [tex]\( B \)[/tex] and the remaining ratio is contributed by [tex]\( A \)[/tex] and [tex]\( B \)[/tex], where the contribution of [tex]\( B \)[/tex] is thrice that of [tex]\( A \)[/tex].



Answer :

Let's solve this problem step-by-step.

### Step-by-Step Solution

Initially, [tex]$A$[/tex] and [tex]$B$[/tex] share profit and loss equally. This means their initial ratios are:
- [tex]\( \text{Initial Ratio of } A = \frac{1}{2} \)[/tex]
- [tex]\( \text{Initial Ratio of } B = \frac{1}{2} \)[/tex]

### Step 1: C's Admission Share
[tex]$C$[/tex] is admitted for a [tex]\(\frac{1}{6}\)[/tex]th share in the profits and losses.

So, [tex]\( \text{C's Share} = \frac{1}{6} \)[/tex].

### Step 2: Grimm Share by B
Half of C's share is given by [tex]$B$[/tex]:
[tex]\[ \text{Share of C grimmed by B} = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12} \][/tex]

### Step 3: Remaining Share of C
The remaining share of C is:
[tex]\[ \text{Remaining Share of C} = \frac{1}{6} - \frac{1}{12} = \frac{1}{12} \][/tex]

### Step 4: Contribution to Remaining Share
The remaining share of C is contributed by [tex]$A$[/tex] and [tex]$B$[/tex] where the contribution of [tex]$B$[/tex] is thrice that of [tex]$A$[/tex].

Let the contribution of [tex]$A$[/tex] towards the remaining share be [tex]\(x\)[/tex]. Therefore, the contribution of [tex]$B$[/tex] will be [tex]\(3x\)[/tex].

[tex]\[ x + 3x = \frac{1}{12} \][/tex]

### Step 5: Solving for x
[tex]\[ 4x = \frac{1}{12} \][/tex]
[tex]\[ x = \frac{1}{12} \div 4 = \frac{1}{12} \times \frac{1}{4} = \frac{1}{48} \][/tex]

So, the contribution made by [tex]$A$[/tex] is [tex]\(\frac{1}{48}\)[/tex] and the contribution made by [tex]$B$[/tex] is [tex]\(3 \times \frac{1}{48} = \frac{3}{48} = \frac{1}{16}\)[/tex].

### Final Ratios after Admission of C

Now we calculate the final ratios for each partner after C is admitted.

### Step 6: Calculating Final Ratios
#### For A:
[tex]\[ \text{Initial Ratio of A} = \frac{1}{2} \][/tex]
[tex]\[ \text{Contribution of A} = \frac{1}{48} \][/tex]
[tex]\[ \text{Final Ratio of A} = \frac{1}{2} - \frac{1}{48} \][/tex]
[tex]\[ \text{Final Ratio of A} = \frac{24}{48} - \frac{1}{48} = \frac{23}{48} \][/tex]

#### For B:
[tex]\[ \text{Initial Ratio of B} = \frac{1}{2} \][/tex]
[tex]\[ \text{Share grimmed by B} = \frac{1}{12} \][/tex]
[tex]\[ \text{Contribution by B} = \frac{3}{48} = \frac{1}{16} \][/tex]
[tex]\[ \text{Final Ratio of B} = \frac{1}{2} - \frac{1}{12} - \frac{1}{16} \][/tex]
[tex]\[ \text{Final Ratio of B} = \frac{24}{48} - \frac{4}{48} - \frac{3}{48} = \frac{24 - 4 - 3}{48} = \frac{17}{48} \][/tex]

#### For C:
[tex]\[ \text{Final Ratio of C} = \frac{1}{6} = \frac{8}{48} \][/tex]

### Summary of Final Ratios
- [tex]\( \text{Final Ratio of A} = \frac{23}{48} \approx 0.4791666666666667 \)[/tex]
- [tex]\( \text{Final Ratio of B} = \frac{17}{48} \approx 0.3541666666666667 \)[/tex]
- [tex]\( \text{Final Ratio of C} = \frac{8}{48} = \frac{1}{6} \approx 0.16666666666666666 \)[/tex]

Thus, after admitting C, the final profit-sharing ratios are:
- A: [tex]\( \approx 0.4791666666666667\)[/tex]
- B: [tex]\( \approx 0.3541666666666667\)[/tex]
- C: [tex]\( \approx 0.16666666666666666\)[/tex]