If [tex]$(-4,-36)$[/tex] and [tex]$(6,54)$[/tex] are two anchor points on a trend line, find the equation of the line.

[tex]\[ y = [?] x + \square \][/tex]



Answer :

To find the equation of a line given two anchor points, [tex]\((-4, -36)\)[/tex] and [tex]\( (6, 54)\)[/tex], follow these steps:

1. Determine the slope ([tex]\(m\)[/tex]) of the line:

The formula to calculate the slope [tex]\(m\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the coordinates [tex]\((x_1, y_1) = (-4, -36)\)[/tex] and [tex]\((x_2, y_2) = (6, 54)\)[/tex], plug in the values:
[tex]\[ m = \frac{54 - (-36)}{6 - (-4)} = \frac{54 + 36}{6 + 4} = \frac{90}{10} = 9 \][/tex]

2. Calculate the y-intercept ([tex]\(b\)[/tex]):

Use the slope-intercept form of the equation of a line:
[tex]\[ y = mx + b \][/tex]
Substitute one of the points and the slope into the equation to solve for [tex]\(b\)[/tex]. We'll use the point [tex]\((-4, -36)\)[/tex]:
[tex]\[ -36 = 9(-4) + b \][/tex]
Simplify the equation:
[tex]\[ -36 = -36 + b \][/tex]
Solving for [tex]\(b\)[/tex] gives:
[tex]\[ b = 0 \][/tex]

3. Write the equation of the line:

Now that we have the slope [tex]\(m = 9\)[/tex] and the y-intercept [tex]\(b = 0\)[/tex], we can write the equation of the line in slope-intercept form:
[tex]\[ y = 9x + 0 \][/tex]
Simplifying further:
[tex]\[ y = 9x \][/tex]

Therefore, the equation of the line is [tex]\(y = 9x\)[/tex].