Consider the following quadratic function.

[tex]\[ f(x) = -2x^2 + 20x - 43 \][/tex]

(a) Write the equation in the form [tex]\[ f(x) = a(x-h)^2 + k \][/tex]. Then give the vertex of its graph.

Writing in the form specified: [tex]\[ f(x) = \square \][/tex]

Vertex: [tex]\[ (\square, \square) \][/tex]



Answer :

To rewrite the given quadratic function [tex]\( f(x) = -2x^2 + 20x - 43 \)[/tex] in the form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], we need to complete the square. Let's proceed step by step:

1. Start with the original quadratic function:
[tex]\[ f(x) = -2x^2 + 20x - 43 \][/tex]

2. Factor out the coefficient of [tex]\( x^2 \)[/tex] (which is -2) from the first two terms:
[tex]\[ f(x) = -2(x^2 - 10x) - 43 \][/tex]

3. To complete the square, take half of the coefficient of [tex]\( x \)[/tex] (inside the parentheses), square it, and add/subtract it inside the parentheses:
- The coefficient of [tex]\( x \)[/tex] is -10. Half of -10 is -5, and squaring -5 gives 25.
[tex]\[ f(x) = -2(x^2 - 10x + 25 - 25) - 43 \][/tex]

4. Rewrite the expression inside the parentheses to form a perfect square trinomial:
[tex]\[ f(x) = -2((x - 5)^2 - 25) - 43 \][/tex]

5. Distribute the -2 and simplify:
[tex]\[ f(x) = -2(x - 5)^2 + 50 - 43 \][/tex]
[tex]\[ f(x) = -2(x - 5)^2 + 7 \][/tex]

Now, the quadratic function is in the form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where:
- [tex]\( a = -2 \)[/tex]
- [tex]\( h = 5 \)[/tex]
- [tex]\( k = 7 \)[/tex]

So, the equation in the specified form is:
[tex]\[ f(x) = -2(x - 5)^2 + 7 \][/tex]

The vertex of the quadratic function, given in the form [tex]\( a(x-h)^2 + k \)[/tex], is:
[tex]\[ (h, k) = (5, 7) \][/tex]

Thus, the answers are:

Writing in the form specified:
[tex]\[ f(x) = -2(x - 5)^2 + 7 \][/tex]

Vertex:
[tex]\[ (5, 7) \][/tex]