Insert round brackets into the computer code below so that the value of the variable [tex]$z$[/tex] corresponds to the formula:

[tex]\[
x = \left( \frac{\sqrt{1535} + 3}{1 - e^{-2}} \right)^2 \bmod \frac{336030}{345}
\][/tex]

```python
import math

# Corrected formula
x = (math.sqrt(1535) + 3) / (1 - math.exp(-2)) 2 % (336030 / 345)
```

Consider the following program:

```python
# Check whether the following statement is correct
data = "A million seconds is 11 days, 12 hours, 46 minutes and 49 seconds"
# Split the data into individual words
```



Answer :

Certainly, let's break down the detailed, step-by-step solution for the rearranged formula given in the problem statement.

### Problem Statement
We need to determine the value of [tex]\( x \)[/tex] based on the following formula:
[tex]\[ x = \left(\frac{\sqrt{1535} + 3}{1 - e^{-2}}\right)^2 \bmod \frac{336030}{345} \][/tex]

Let's break it down step-by-step:

#### Step 1: Compute the numerator
First, calculate the square root of 1535 and then add 3 to it.
[tex]\[ \sqrt{1535} + 3 \][/tex]

- [tex]\(\sqrt{1535} \approx 39.192092809 \)[/tex] (This would be calculated using a precise method or a calculator)
- Adding 3 to it:
[tex]\[ 39.192092809 + 3 = 42.192092809 \][/tex]

#### Step 2: Compute the denominator
Next, compute [tex]\( 1 - e^{-2} \)[/tex].
[tex]\[ 1 - e^{-2} \][/tex]

- [tex]\( e^{-2} \)[/tex] can be found using the exponential function which is a constant approximately equal to:
[tex]\[ e^{-2} \approx 0.1353352832 \][/tex]

So:
[tex]\[ 1 - 0.1353352832 \approx 0.8646647168 \][/tex]

#### Step 3: Form the fraction
Now, divide the result from the numerator by the result from the denominator:
[tex]\[ \frac{\sqrt{1535} + 3}{1 - e^{-2}} = \frac{42.192092809}{0.8646647168} \approx 48.800653579 \][/tex]

#### Step 4: Square the fraction
Square the result obtained from the fraction:
[tex]\[ \left(\frac{\sqrt{1535} + 3}{1 - e^{-2}}\right)^2 \][/tex]

- Squaring [tex]\( 48.800653579 \)[/tex] gives:
[tex]\[ (48.800653579)^2 \approx 2380.815230705 \][/tex]

#### Step 5: Compute the modulus term
Finally, we need to compute the modulus operation with [tex]\( \frac{336030}{345} \)[/tex].
[tex]\[ \frac{336030}{345} = 973.333333333 \][/tex]

Now, apply the modulus operation:
[tex]\[ 2380.815230705 \bmod 973.333333333 \][/tex]

#### Step 6: Result
The result obtained is:
[tex]\[ 2380.815230705 \bmod 973.333333333 \approx 56.41590857015394 \][/tex]

Putting it all together, the value of [tex]\( x \)[/tex] is:
[tex]\[ x \approx 56.41590857015394 \][/tex]

Thus, the solution to the given problem is:
[tex]\[ x \approx 56.41590857015394 \][/tex]

This detailed breakdown follows the sequence of operations as required by the formula provided.