Answer :
To determine the [tex]\( x \)[/tex]-intercept of the equation [tex]\( y = 2x - 8 \)[/tex], we need to find the value of [tex]\( x \)[/tex] when [tex]\( y = 0 \)[/tex]. Follow these steps:
1. Set [tex]\( y \)[/tex] to [tex]\( 0 \)[/tex] in the equation:
[tex]\[ 0 = 2x - 8 \][/tex]
2. Solve the equation for [tex]\( x \)[/tex]. Start by isolating [tex]\( 2x \)[/tex]:
[tex]\[ 0 + 8 = 2x \][/tex]
[tex]\[ 8 = 2x \][/tex]
3. Divide both sides of the equation by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{8}{2} = x \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept of the equation [tex]\( y = 2x - 8 \)[/tex] is [tex]\(\boxed{4}\)[/tex].
So, the correct answer is:
D) 4
1. Set [tex]\( y \)[/tex] to [tex]\( 0 \)[/tex] in the equation:
[tex]\[ 0 = 2x - 8 \][/tex]
2. Solve the equation for [tex]\( x \)[/tex]. Start by isolating [tex]\( 2x \)[/tex]:
[tex]\[ 0 + 8 = 2x \][/tex]
[tex]\[ 8 = 2x \][/tex]
3. Divide both sides of the equation by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{8}{2} = x \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept of the equation [tex]\( y = 2x - 8 \)[/tex] is [tex]\(\boxed{4}\)[/tex].
So, the correct answer is:
D) 4