Solve the following system of equations by any method. Write your answers as an ordered pair. If infinitely many solutions exist, enter [tex]oo[/tex]. If no solution exists, enter [tex]DNE[/tex].

[tex]\[
\begin{array}{|c|c|}
\hline
\text{System of Equations} & \\
\hline
x + 3y = -26 & \\
-x + 6y = -46 & \\
\hline
5x + 9y = 29 & \\
15x + 27y = -3 & \\
\hline
3x + 9y = 66 & \\
-3x + 2y = 0 & \\
\hline
7x - 9y = 9 & \\
-14x + 18y = -18 & \\
\hline
\end{array}
\][/tex]



Answer :

To solve each system of equations, we will follow standard algebraic methods such as the substitution method or the elimination method. Here is the detailed step-by-step solution for each pair of equations:

### System 1:
[tex]\[ \begin{cases} x + 3y = -26 \quad \text{(1)} \\ -x + 6y = -46 \quad \text{(2)} \end{cases} \][/tex]

1. Add equation (1) and (2) to eliminate [tex]\(x\)[/tex]:
[tex]\[ (x + 3y) + (-x + 6y) = -26 + (-46) \][/tex]
[tex]\[ 9y = -72 \][/tex]
[tex]\[ y = -8 \][/tex]

2. Substitute [tex]\(y = -8\)[/tex] back into equation (1):
[tex]\[ x + 3(-8) = -26 \][/tex]
[tex]\[ x - 24 = -26 \][/tex]
[tex]\[ x = -2 \][/tex]

The solution for System 1 is [tex]\((-2, -8)\)[/tex].

### System 2:
[tex]\[ \begin{cases} 5x + 9y = 29 \quad \text{(3)} \\ 15x + 27y = -3 \quad \text{(4)} \end{cases} \][/tex]

1. Recognize that equation (4) is a multiple of equation (3):
[tex]\[ 15x + 27y = 3(5x + 9y) = 3 \times 29 = 87 \][/tex]
But given as -3, which creates contradiction. This implies:
[tex]\[ 15x + 27y = -3 \Rightarrow \text{Contradiction with } 3(5x + 9y) = 87 \][/tex]

There are no solutions for System 2, so the answer is [tex]\(\text{DNE}\)[/tex].

### System 3:
[tex]\[ \begin{cases} 3x + 9y = 66 \quad \text{(5)} \\ -3x + 2y = 0 \quad \text{(6)} \end{cases} \][/tex]

1. Add equation (5) and (6):
[tex]\[ 3x + 9y + (-3x + 2y) = 66 + 0 \][/tex]
[tex]\[ 11y = 66 \][/tex]
[tex]\[ y = 6 \][/tex]

2. Substitute [tex]\(y = 6\)[/tex] back into equation (6):
[tex]\[ -3x + 2(6) = 0 \][/tex]
[tex]\[ -3x + 12 = 0 \][/tex]
[tex]\[ -3x = -12 \][/tex]
[tex]\[ x = 4 \][/tex]

The solution for System 3 is [tex]\((4, 6)\)[/tex].

### System 4:
[tex]\[ \begin{cases} 7x - 9y = 9 \quad \text{(7)} \\ -14x + 18y = -18 \quad \text{(8)} \end{cases} \][/tex]

1. Notice that equation (8) is a multiple of equation (7):
[tex]\[ -14x + 18y = -2(7x - 9y) = -2 \times 9 = -18 \][/tex]

Since these equations are multiples of each other, they represent the same line. Therefore, there are infinitely many solutions that can be expressed as:
[tex]\[ 7x - 9y = 9 \implies x = \frac{9y + 9}{7} \][/tex]

The solution can be written as:
[tex]\[ (x, y) = \left( \frac{9y + 9}{7}, y \right) \][/tex]

### Summary:
System 1: [tex]\((-2, -8)\)[/tex]
System 2: [tex]\(\text{DNE}\)[/tex]
System 3: [tex]\((4, 6)\)[/tex]
System 4: [tex]\(\left( \frac{9y + 9}{7}, y \right)\)[/tex] where [tex]\( y \)[/tex] is any real number.