Answered

Solve for [tex]\( x \)[/tex]:
[tex]\[ \left[\left\{\left(\frac{2}{5}\right)^2\right\}^4\right]^{x+2} = \left[\left\{\left(\frac{2}{5}\right)^{-2}\right\}^{(x-1)}\right]^{-3} \][/tex]



Answer :

Let's solve the equation step-by-step.

Given equation:
[tex]\[ \left[\left\{\left(\frac{2}{5}\right)^2\right\}^4\right]^{x+2}=\left[\left\{\left(\frac{2}{5}\right)^{-2}\right\}^{(x-1)}\right]^{-3} \][/tex]

First, let's simplify both sides of the equation.

### Simplifying the Left Side
[tex]\[ \left\{\left(\frac{2}{5}\right)^2\right\}^4 = \left(\frac{2}{5}\right)^{2 \cdot 4} = \left(\frac{2}{5}\right)^8 \][/tex]
Now we have:
[tex]\[ \left(\left(\frac{2}{5}\right)^8\right)^{x+2} = \left(\frac{2}{5}\right)^{8(x+2)} \][/tex]

### Simplifying the Right Side
[tex]\[ \left\{\left(\frac{2}{5}\right)^{-2}\right\}^{(x-1)} = \left(\frac{2}{5}\right)^{-2(x-1)} \][/tex]
Raising this expression to the power of [tex]\(-3\)[/tex]:
[tex]\[ \left(\left(\frac{2}{5}\right)^{-2(x-1)}\right)^{-3} = \left(\frac{2}{5}\right)^{-2(x-1) \cdot (-3)} \][/tex]
Simplifying the exponent:
[tex]\[ \left(\frac{2}{5}\right)^{-2(x-1) \cdot (-3)} = \left(\frac{2}{5}\right)^{6(x-1)} \][/tex]

### Equating the Simplified Expressions
Now, equate the simplified expressions from both sides:
[tex]\[ \left(\frac{2}{5}\right)^{8(x+2)} = \left(\frac{2}{5}\right)^{6(x-1)} \][/tex]

Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 8(x+2) = 6(x-1) \][/tex]

Solving the equation for [tex]\( x \)[/tex]:

1. Distribute the constants:
[tex]\[ 8x + 16 = 6x - 6 \][/tex]

2. Collect the [tex]\( x \)[/tex]-terms on one side:
[tex]\[ 8x - 6x = -6 - 16 \][/tex]

3. Simplify:
[tex]\[ 2x = -22 \][/tex]
[tex]\[ x = -11 \][/tex]

Thus, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = -2.75 \][/tex]

This concludes the solution to the equation.