The given text seems to be a mathematical notation involving coordinates and possibly other operations. However, it is not clearly formatted and appears to be nonsensical. Here is a coherent reformulation:

Given the points [tex]\((3,4)\)[/tex], [tex]\((7,8)\)[/tex], and [tex]\((-2,-5)\)[/tex], compute the product of the coordinates of the last point by 4 and then write the coordinates of the point [tex]\((5,2)\)[/tex].

[tex]\[\text{Given Points:}\][/tex]
[tex]\[
\begin{array}{l}
(3, 4) \\
(7, 8) \\
(-2, -5)
\end{array}
\][/tex]

[tex]\[\text{Compute:}\][/tex]
[tex]\[
(-2 \cdot 4, -5 \cdot 4) = (-8, -20)
\][/tex]

[tex]\[\text{Additional Point: } (5, 2)\][/tex]

Thus, the coordinates and computations involved are clearly presented and logically formatted.



Answer :

Let's solve the problem step by step.

1. Addition of Coordinate Pairs:
- We are given the coordinate pairs [tex]\((3, 4)\)[/tex] and [tex]\((7, 8)\)[/tex].
- To add these coordinate pairs, we add their corresponding components:
[tex]\[ (3 + 7, 4 + 8) \][/tex]
- Performing the addition:
[tex]\[ (10, 12) \][/tex]

2. Scalar Multiplication of a Coordinate Pair:
- We are given the coordinate pair [tex]\((-2, -5)\)[/tex] and a scalar [tex]\(4\)[/tex].
- To perform scalar multiplication, we multiply each component of the pair by the scalar:
[tex]\[ (-2 \times 4, -5 \times 4) \][/tex]
- Performing the multiplication:
[tex]\[ (-8, -20) \][/tex]

3. Third Coordinate Pair:
- We are given another coordinate pair [tex]\((5, 2)\)[/tex], which we will consider as part of the final result.

So, putting it all together, we have:
- The result of adding [tex]\((3, 4)\)[/tex] and [tex]\((7, 8)\)[/tex] is [tex]\((10, 12)\)[/tex].
- The result of the scalar multiplication of [tex]\((-2, -5)\)[/tex] by [tex]\(4\)[/tex] is [tex]\((-8, -20)\)[/tex].
- The given coordinate pair is [tex]\((5, 2)\)[/tex].

Thus, the final results are:
[tex]\[ ((10, 12), (-8, -20), (5, 2)) \][/tex]