2) The formula to find the sum of the first [tex]n[/tex] terms of positive odd numbers is:

a) [tex]S_n = n(n+1)[/tex]

b) [tex]S_n = n(n-1)[/tex]

c) [tex]S_n = n^3[/tex]

d) [tex]S_n = n^2[/tex]



Answer :

To find the formula for the sum of the first [tex]\( n \)[/tex] terms of positive odd numbers, let's delve into the sequence and calculate the sums step-by-step.

The sequence of the first [tex]\( n \)[/tex] positive odd numbers is:
[tex]\[ 1, 3, 5, 7, 9, \ldots, (2n-1) \][/tex]

First, let's sum up the first few terms to identify any patterns:

1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ \text{Sum} = 1 = 1^2 = 1 \][/tex]

2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ \text{Sum} = 1 + 3 = 4 = 2^2 = 4 \][/tex]

3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ \text{Sum} = 1 + 3 + 5 = 9 = 3^2 = 9 \][/tex]

4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ \text{Sum} = 1 + 3 + 5 + 7 = 16 = 4^2 = 16 \][/tex]

From these steps, we observe a clear pattern: the sum of the first [tex]\( n \)[/tex] positive odd numbers equals [tex]\( n^2 \)[/tex].

To generalize this, for any integer [tex]\( n \)[/tex]:
[tex]\[ S_n = n^2 \][/tex]

Therefore, the correct formula for the sum of the first [tex]\( n \)[/tex] terms of positive odd numbers is:
[tex]\[ \boxed{S_n = n^2} \][/tex]

Hence, the correct answer is:
[tex]\[ \text{d) } S_n = n^2 \][/tex]