A triangle has sides measuring 8 inches and 12 inches. If [tex]$x$[/tex] represents the length in inches of the third side, which inequality gives the range of possible values for [tex]$x$[/tex]?

A. [tex]$8 \ \textless \ x \ \textless \ 12$[/tex]

B. [tex]$4 \leq x \leq 20$[/tex]

C. [tex][tex]$8 \leq x \leq 12$[/tex][/tex]

D. [tex]$4 \ \textless \ x \ \textless \ 20$[/tex]



Answer :

To determine the range of possible values for the third side of a triangle when two sides are given as 8 inches and 12 inches, we use the triangle inequality theorem. This theorem states that for any triangle with sides [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ a + b > c \][/tex]
[tex]\[ a + c > b \][/tex]
[tex]\[ b + c > a \][/tex]

Here [tex]\( a = 8 \)[/tex], [tex]\( b = 12 \)[/tex], and [tex]\( c = x \)[/tex] (the third side we are looking for). Let’s apply the theorem step by step:

1. Adding sides [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ 8 + 12 > x \][/tex]
[tex]\[ 20 > x \][/tex]
or
[tex]\[ x < 20 \][/tex]

2. Adding sides [tex]\( a \)[/tex] and [tex]\( x \)[/tex]:
[tex]\[ 8 + x > 12 \][/tex]
[tex]\[ x > 4 \][/tex]

3. Adding sides [tex]\( b \)[/tex] and [tex]\( x \)[/tex]:
[tex]\[ 12 + x > 8 \][/tex]

This inequality is always true for positive [tex]\( x \)[/tex] because [tex]\( x > 4 \)[/tex], which is implicitly included in the previous inequality ([tex]\(x > 4\)[/tex]).

So, combining the resulting inequalities, we get:

[tex]\[ 4 < x < 20 \][/tex]

Therefore, the range of possible values for [tex]\( x \)[/tex] is:
[tex]\[ 4 < x < 20 \][/tex]

This matches the inequality given in option D.

Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]