Solve the system.

[tex]\[
\left\{
\begin{array}{l}
x^2 + y^2 = 16 \\
y + 4 = x^2
\end{array}
\right.
\][/tex]

Possible solutions:
[tex]\[(-2.65, [?]), (0, []), (2.65, [\ ])\][/tex]



Answer :

To solve the system of equations:

[tex]\[ \left\{ \begin{array}{l} x^2 + y^2 = 16 \\ y + 4 = x^2 \end{array} \right. \][/tex]

follow these steps:

1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] using the second equation:

[tex]\[ y + 4 = x^2 \quad \Rightarrow \quad y = x^2 - 4 \][/tex]

2. Substitute [tex]\( y \)[/tex] into the first equation:

[tex]\[ x^2 + y^2 = 16 \quad \Rightarrow \quad x^2 + (x^2 - 4)^2 = 16 \][/tex]

3. Simplify and solve the equation:

[tex]\[ x^2 + (x^2 - 4)^2 = 16 \][/tex]

Expand and simplify:

[tex]\[ x^2 + (x^2 - 4)^2 = 16 \\ x^2 + (x^4 - 8x^2 + 16) = 16 \\ x^4 - 7x^2 + 16 = 16 \\ x^4 - 7x^2 = 0 \][/tex]

Factor the equation:

[tex]\[ x^2(x^2 - 7) = 0 \][/tex]

Solve for [tex]\( x \)[/tex]:

[tex]\[ x^2 = 0 \quad \text{or} \quad x^2 = 7 \\ x = 0 \quad \text{or} \quad x = \pm \sqrt{7} \][/tex]

4. Find the corresponding [tex]\( y \)[/tex] values for each [tex]\( x \)[/tex] solution:

Using [tex]\( y = x^2 - 4 \)[/tex]:

- For [tex]\( x = 0 \)[/tex]:

[tex]\[ y = 0^2 - 4 = -4 \][/tex]

- For [tex]\( x = \sqrt{7} \)[/tex]:

[tex]\[ y = (\sqrt{7})^2 - 4 = 7 - 4 = 3 \][/tex]

- For [tex]\( x = -\sqrt{7} \)[/tex]:

[tex]\[ y = (-\sqrt{7})^2 - 4 = 7 - 4 = 3 \][/tex]

5. Summarize the solutions as coordinate pairs:

[tex]\[ (x, y) = (0, -4), (\sqrt{7}, 3), (-\sqrt{7}, 3) \][/tex]

In conclusion, the solutions to the system of equations are:

[tex]\[ (0, -4), (\sqrt{7}, 3), (-\sqrt{7}, 3) \][/tex]