Answer :

Sure, let's simplify the given expression step-by-step:

[tex]\[ \left(-\frac{1}{2}\right)^2 \times \left(-\frac{1}{2}\right)^3 \][/tex]

1. Understand the expression: We are dealing with a product of two terms involving the same base [tex]\(\left(-\frac{1}{2}\right)\)[/tex] raised to different exponents, 2 and 3.

2. Apply the property of exponents: When multiplying terms with the same base, you can add the exponents:

[tex]\[ a^m \times a^n = a^{m+n} \][/tex]

In this case, our base [tex]\(a\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex], [tex]\(m=2\)[/tex], and [tex]\(n=3\)[/tex].

[tex]\[ \left(-\frac{1}{2}\right)^2 \times \left(-\frac{1}{2}\right)^3 = \left(-\frac{1}{2}\right)^{2+3} \][/tex]

3. Add the exponents:

[tex]\[ 2 + 3 = 5 \][/tex]

So the expression simplifies to:

[tex]\[ \left(-\frac{1}{2}\right)^5 \][/tex]

4. Evaluate the final expression: Calculate the power:

First, recognize that raising [tex]\(-\frac{1}{2}\)[/tex] to an odd power (5) will keep the negative sign.

[tex]\[ \left(-\frac{1}{2}\right)^5 = -\left(\frac{1}{2}\right)^5 \][/tex]

Next, calculate [tex]\(\left(\frac{1}{2}\right)^5\)[/tex]:

[tex]\[ \left(\frac{1}{2}\right)^5 = \frac{1^5}{2^5} = \frac{1}{32} \][/tex]

Therefore,

[tex]\[ \left(-\frac{1}{2}\right)^5 = -\frac{1}{32} \][/tex]

So, the simplified result of the expression [tex]\(\left(-\frac{1}{2}\right)^2 \times \left(-\frac{1}{2}\right)^3\)[/tex] is:

[tex]\[ -\frac{1}{32} \quad \text{or} \quad -0.03125 \][/tex]

Thus, the final answer is:

[tex]\[ -0.03125 \][/tex]