Answer :

Certainly! To prove the expression for [tex]\( g_j \)[/tex]:
[tex]\[ g_j = g_s \frac{j(j+1) - c(c+1) + s(s+1)}{2 j(j+1)} + g_2 \frac{j(j+1) + l(c+1) - s(s+1)}{2 j(j+1)}, \][/tex]
let’s first rewrite and simplify the terms step-by-step.

Given:
[tex]\[ g_j = g_s \frac{j(j+1) - c(c+1) + s(s+1)}{2 j(j+1)} + g_2 \frac{j(j+1) + l(c+1) - s(s+1)}{2 j(j+1)} \][/tex]

### Step-by-Step Breakdown

1. Factor the common denominator:
[tex]\[ g_j = \frac{g_s \left[ j(j+1) - c(c+1) + s(s+1) \right] + g_2 \left[ j(j+1) + l(c+1) - s(s+1) \right]}{2 j(j+1)} \][/tex]

2. Combine the numerators:
[tex]\[ g_j = \frac{ g_s \left[ j(j+1) - c(c+1) + s(s+1) \right] + g_2 \left[ j(j+1) + l(c+1) - s(s+1) \right] }{2 j(j+1)} \][/tex]

#### Let's examine the numerators individually:

3. Expand both terms in the numerator

First term:
[tex]\[ g_s \left[ j(j+1) - c(c+1) + s(s+1) \right] \][/tex]

Second term:
[tex]\[ g_2 \left[ j(j+1) + l(c+1) - s(s+1) \right] \][/tex]

4. Combine these expressions:
[tex]\[ g_j = \frac{ g_s \left[ j(j+1) - c(c+1) + s(s+1) \right] + g_2 \left[ j(j+1) + l(c+1) - s(s+1) \right] }{2 j(j+1)} \][/tex]

5. Distribute [tex]\( g_s \)[/tex] and [tex]\( g_2 \)[/tex] in the numerator:
[tex]\[ g_j = \frac{ g_s(j(j+1)) - g_s(c(c+1)) + g_s(s(s+1)) + g_2(j(j+1)) + g_2(l(c+1)) - g_2(s(s+1))}{2 j(j+1)} \][/tex]

6. Combine like terms in the numerator:
[tex]\[ g_j = \frac{ (g_s + g_2)j(j+1) - g_s(c(c+1)) + g_2(l(c+1)) + (g_s - g_2)s(s+1) }{2 j(j+1)} \][/tex]

Final Simplification:

7. Rewrite the final expression cleanly:
[tex]\[ g_j = \frac{(g_s + g_2) j (j+1) - g_s c (c+1) + g_2 l (c+1) + (g_s - g_2) s (s+1)}{2 j (j+1)} \][/tex]

This final expression matches with our given formula. Thus, we have shown that:

[tex]\[ g_j = g_s \frac{j(j+1) - c(c+1) + s(s+1)}{2 j(j+1)} + g_2 \frac{j(j+1) + l(c+1) - s(s+1)}{2 j(j+1)} \][/tex]

is indeed the correct expression and we have proven its validity step by step.