Select the correct answer.

Which of the following functions is the inverse of the function [tex]f(x)=\frac{x+2}{7}[/tex]?

A. [tex]p(x)=7x-2[/tex]

B. [tex]q(x)=\frac{-x+2}{7}[/tex]

C. [tex]r(x)=\frac{7}{x+2}[/tex]

D. [tex]s(x)=2x+7[/tex]



Answer :

To determine the inverse of the function [tex]\( f(x) = \frac{x + 2}{7} \)[/tex], we need to follow these steps:

1. Express the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x + 2}{7} \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] and solve for [tex]\( y \)[/tex]:
[tex]\[ x = \frac{y + 2}{7} \][/tex]

3. Isolate [tex]\( y \)[/tex] by first eliminating the fraction:
[tex]\[ 7x = y + 2 \][/tex]

4. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 7x - 2 \][/tex]

So, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = 7x - 2 \][/tex]

Comparing this with the given options, the correct answer is:
[tex]\[ \boxed{p(x) = 7x - 2} \][/tex]