Answer :
To solve the given problem, follow these steps:
1. Identify the matrix:
We are given a 2x2 matrix:
[tex]\[ \begin{pmatrix} 2 & -36 \\ 2 & 3 \end{pmatrix} \][/tex]
2. Calculate the determinant:
The determinant of a 2x2 matrix
[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
is calculated by the formula:
[tex]\[ \text{Determinant} = ad - bc \][/tex]
For our matrix, let's assign:
[tex]\[ a = 2, \quad b = -36, \quad c = 2, \quad d = 3 \][/tex]
Now, plug these values into the determinant formula:
[tex]\[ \text{Determinant} = (2 \times 3) - (2 \times -36) \][/tex]
Calculate the multiplication:
[tex]\[ \text{Determinant} = 6 - (-72) \][/tex]
Simplify the expression:
[tex]\[ \text{Determinant} = 6 + 72 \][/tex]
[tex]\[ \text{Determinant} = 78 \][/tex]
3. Find the square root of the determinant:
We have the determinant of the matrix as 78. Now, we need to find its square root:
[tex]\[ \text{Square Root} = \sqrt{78} \][/tex]
The square root of 78 is approximately:
[tex]\[ \sqrt{78} \approx 8.831760866327848 \][/tex]
4. Present the final answer:
The determinant of the matrix is 78, and its square root is approximately 8.831760866327848.
So, the solution is:
[tex]\[ \text{Determinant: } 78, \quad \text{Square Root: } 8.831760866327848 \][/tex]
1. Identify the matrix:
We are given a 2x2 matrix:
[tex]\[ \begin{pmatrix} 2 & -36 \\ 2 & 3 \end{pmatrix} \][/tex]
2. Calculate the determinant:
The determinant of a 2x2 matrix
[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
is calculated by the formula:
[tex]\[ \text{Determinant} = ad - bc \][/tex]
For our matrix, let's assign:
[tex]\[ a = 2, \quad b = -36, \quad c = 2, \quad d = 3 \][/tex]
Now, plug these values into the determinant formula:
[tex]\[ \text{Determinant} = (2 \times 3) - (2 \times -36) \][/tex]
Calculate the multiplication:
[tex]\[ \text{Determinant} = 6 - (-72) \][/tex]
Simplify the expression:
[tex]\[ \text{Determinant} = 6 + 72 \][/tex]
[tex]\[ \text{Determinant} = 78 \][/tex]
3. Find the square root of the determinant:
We have the determinant of the matrix as 78. Now, we need to find its square root:
[tex]\[ \text{Square Root} = \sqrt{78} \][/tex]
The square root of 78 is approximately:
[tex]\[ \sqrt{78} \approx 8.831760866327848 \][/tex]
4. Present the final answer:
The determinant of the matrix is 78, and its square root is approximately 8.831760866327848.
So, the solution is:
[tex]\[ \text{Determinant: } 78, \quad \text{Square Root: } 8.831760866327848 \][/tex]