Answer :

Sure! Let's solve the given expression step-by-step:

We are given the expression [tex]\(\sqrt{5x \cdot \left[(x+5)^2 - (x-5)^2\right]}\)[/tex].

1. First, let's simplify the expression inside the square root, which is [tex]\(5x \cdot \left[(x+5)^2 - (x-5)^2\right]\)[/tex].

2. Consider the part inside the parentheses: [tex]\((x+5)^2 - (x-5)^2\)[/tex]. This is a difference of squares and can be expanded:
[tex]\[ (x+5)^2 = x^2 + 10x + 25 \][/tex]
[tex]\[ (x-5)^2 = x^2 - 10x + 25 \][/tex]
Subtracting these two expressions, we get:
[tex]\[ (x^2 + 10x + 25) - (x^2 - 10x + 25) = x^2 + 10x + 25 - x^2 + 10x - 25 \][/tex]
Simplifying further:
[tex]\[ x^2 - x^2 + 10x + 10x + 25 - 25 = 20x \][/tex]
Therefore:
[tex]\[ (x+5)^2 - (x-5)^2 = 20x \][/tex]

3. Substitute this back into the original expression:
[tex]\[ 5x \cdot 20x = 100x^2 \][/tex]

4. Now our expression inside the square root simplifies to [tex]\(100x^2\)[/tex]:
[tex]\[ \sqrt{100x^2} \][/tex]

5. Simplify the square root of [tex]\(100x^2\)[/tex]:
[tex]\[ \sqrt{100x^2} = 10\sqrt{x^2} \][/tex]

6. Since [tex]\(\sqrt{x^2} = |x|\)[/tex], we finally have:
[tex]\[ 10|x| \][/tex]

Given the context and assuming [tex]\(x \geq 0\)[/tex] for simplicity, we can write [tex]\(10|x| = 10x\)[/tex].

So, [tex]\(\sqrt{5x \cdot \left[(x+5)^2 - (x-5)^2\right]} = 10x\)[/tex].

In summary, the step-by-step solution yields:

[tex]\[ \sqrt{5x \cdot \left[(x+5)^2 - (x-5)^2\right]} = 100x^2, \quad \sqrt{100x^2} = 10x \quad \text{if} \ x \geq 0. \][/tex]