The prices of the 19 top-rated all-season tires for a specific tire size are as follows. Answer parts (a) - (c).

[tex]\[
\begin{array}{llllllllll}
\$ 87 & \$ 115 & \$ 97 & \$ 79 & \$ 81 & \$ 92 & \$ 94 & \$ 88 & \$ 94 & \$ 80 \\
\$ 108 & \$ 113 & \$ 101 & \$ 95 & \$ 85 & \$ 92 & \$ 77 & \$ 98 & \$ 91 &
\end{array}
\][/tex]

a) Determine [tex]\( Q_2 \)[/tex].

[tex]\[ Q_2 = \square \][/tex]

b) Determine [tex]\( Q_1 \)[/tex].

[tex]\[ Q_1 = \square \][/tex]

c) Determine [tex]\( Q_3 \)[/tex].

[tex]\[ Q_3 = \square \][/tex]



Answer :

To solve for the quartiles [tex]\( Q_1, Q_2, \)[/tex] and [tex]\( Q_3 \)[/tex] of the given dataset, we need to follow a series of steps to understand the distribution of the data.

Given:

[tex]\[ \{ 87, 115, 97, 79, 81, 92, 94, 88, 94, 80, 108, 113, 101, 95, 85, 92, 77, 98, 91 \} \][/tex]

Step 1: Sort the data in ascending order.

The sorted dataset is:

[tex]\[ \{ 77, 79, 80, 81, 85, 87, 88, 91, 92, 92, 94, 94, 95, 97, 98, 101, 108, 113, 115 \} \][/tex]

Step 2: Determine [tex]\(Q_2\)[/tex] (the median).

[tex]\( Q_2 \)[/tex] can be found by locating the middle value of the sorted dataset. Since there are 19 data points, the 10th value (when indexed starting from 1) is the median.

Thus, [tex]\( Q_2 \)[/tex] is:

[tex]\[ Q_2 = 92 \][/tex]

Step 3: Determine [tex]\(Q_1\)[/tex] (the first quartile).

To find [tex]\( Q_1 \)[/tex], we need to find the median of the first half of the dataset (i.e., the lower 50%). For this dataset, that would be the first 9 values:

[tex]\[ \{ 77, 79, 80, 81, 85, 87, 88, 91, 92 \} \][/tex]

The median of these 9 numbers is the 5th value (when indexed starting from 1).

Thus, [tex]\( Q_1 \)[/tex] is:

[tex]\[ Q_1 = 86.0 \][/tex]

Step 4: Determine [tex]\(Q_3\)[/tex] (the third quartile).

To find [tex]\( Q_3 \)[/tex], we need to find the median of the second half of the dataset (i.e., the upper 50%). For this dataset, that would be the last 9 values:

[tex]\[ \{ 92, 94, 94, 95, 97, 98, 101, 108, 113, 115 \} \][/tex]

The median of these 10 numbers is the average of the 5th and 6th values (when indexed starting from 1).

Thus, [tex]\( Q_3 \)[/tex] is:

[tex]\[ Q_3 = 97.5 \][/tex]

So, the values are:

[tex]\[ Q_2 = 92.0 \][/tex]
[tex]\[ Q_1 = 86.0 \][/tex]
[tex]\[ Q_3 = 97.5 \][/tex]

Putting it all together:

a) [tex]\( Q_2 = 92.0 \)[/tex]

b) [tex]\( Q_1 = 86.0 \)[/tex]

c) [tex]\( Q_3 = 97.5 \)[/tex]