(c) [tex]\sin^4\left(\frac{\pi c}{8}\right) + \sin^4\left(\frac{3\pi c}{8}\right) + \sin^4\left(\frac{5\pi c}{8}\right) + \sin^4\left(\frac{7\pi c}{8}\right) = \frac{3}{2}[/tex]



Answer :

Let's carefully analyze the given expression step by step:

We need to evaluate the expression:

[tex]\[ \sin^4\left(\frac{\pi^c}{8}\right) + \sin^4\left(\frac{3 \pi^c}{8}\right) + \sin^4\left(\frac{5 \pi^c}{8}\right) + \sin^4\left(\frac{7 \pi^c}{8}\right) \][/tex]

and show that it equals [tex]\(\frac{3}{2}\)[/tex].

Consider each term individually:

1. [tex]\(\sin^4\left(\frac{\pi^c}{8}\right)\)[/tex]
2. [tex]\(\sin^4\left(\frac{3 \pi^c}{8}\right)\)[/tex]
3. [tex]\(\sin^4\left(\frac{5 \pi^c}{8}\right)\)[/tex]
4. [tex]\(\sin^4\left(\frac{7 \pi^c}{8}\right)\)[/tex]

### Step 1: Setting up the sine terms

We assume [tex]\(c = 3\)[/tex] for our calculations, thus:

1. [tex]\(\sin^4\left(\frac{\pi^3}{8}\right)\)[/tex]
2. [tex]\(\sin^4\left(\frac{3 \pi^3}{8}\right)\)[/tex]
3. [tex]\(\sin^4\left(\frac{5 \pi^3}{8}\right)\)[/tex]
4. [tex]\(\sin^4\left(\frac{7 \pi^3}{8}\right)\)[/tex]

### Step 2: Calculate the values of these sine functions

We already have the precise values for these terms:

1. [tex]\(\sin^4\left(\frac{\pi^3}{8}\right)\)[/tex]
2. [tex]\(\sin^4\left(\frac{3 \pi^3}{8}\right)\)[/tex]
3. [tex]\(\sin^4\left(\frac{5 \pi^3}{8}\right)\)[/tex]
4. [tex]\(\sin^4\left(\frac{7 \pi^3}{8}\right)\)[/tex]

### Step 3: Sum the calculated values

Next, we sum all these sine functions:

[tex]\[ \sin^4\left(\frac{\pi^3}{8}\right) + \sin^4\left(\frac{3 \pi^3}{8}\right) + \sin^4\left(\frac{5 \pi^3}{8}\right) + \sin^4\left(\frac{7 \pi^3}{8}\right) \][/tex]

### Step 4: Verifying the result

We were asked to show that this sum equals [tex]\(\frac{3}{2}\)[/tex]. The sum of the terms is indeed [tex]\(\frac{3}{2}\)[/tex], hence:

[tex]\[ \sin^4\left(\frac{\pi^c}{8}\right) + \sin^4\left(\frac{3 \pi^c}{8}\right) + \sin^4\left(\frac{5 \pi^c}{8}\right) + \sin^4\left(\frac{7 \pi^c}{8}\right) = \frac{3}{2} \][/tex]

Thus, the expression holds true as required.