The set of possible values of [tex]n[/tex] is [tex]\{-2, 1, 4\}[/tex]. What is the set of possible values of [tex]m[/tex] if [tex]3m = n - 7[/tex]?

A. [tex]\{-27, -18, -9\}[/tex]
B. [tex]\{-9, -6, -3\}[/tex]
C. [tex]\{-6, -3, 0\}[/tex]
D. [tex]\{-3, -2, -1\}[/tex]



Answer :

To solve for the set of possible values of [tex]\( m \)[/tex] given the equation [tex]\( 3m = n - 7 \)[/tex] and the set of possible values of [tex]\( n \)[/tex] as [tex]\(\{-2, 1, 4\}\)[/tex], we will follow a step-by-step approach.

1. Substitute [tex]\( n = -2 \)[/tex] into the equation [tex]\( 3m = n - 7 \)[/tex]:
[tex]\[ 3m = -2 - 7 \][/tex]
Simplify the right-hand side:
[tex]\[ 3m = -9 \][/tex]
Divide both sides by 3 to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{-9}{3} = -3 \][/tex]

2. Substitute [tex]\( n = 1 \)[/tex] into the equation [tex]\( 3m = n - 7 \)[/tex]:
[tex]\[ 3m = 1 - 7 \][/tex]
Simplify the right-hand side:
[tex]\[ 3m = -6 \][/tex]
Divide both sides by 3 to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{-6}{3} = -2 \][/tex]

3. Substitute [tex]\( n = 4 \)[/tex] into the equation [tex]\( 3m = n - 7 \)[/tex]:
[tex]\[ 3m = 4 - 7 \][/tex]
Simplify the right-hand side:
[tex]\[ 3m = -3 \][/tex]
Divide both sides by 3 to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{-3}{3} = -1 \][/tex]

So, the set of possible values of [tex]\( m \)[/tex] is [tex]\( \{-3, -2, -1\} \)[/tex].

Given the choices:
A. [tex]\(\{-27, -18, -9\}\)[/tex]
B. [tex]\(\{-9, -6, -3\}\)[/tex]
C. [tex]\(\{-6, -3, 0\}\)[/tex]
D. [tex]\(\{-3, -2, -1\}\)[/tex]

The correct answer is:
D. [tex]\(\{-3, -2, -1\}\)[/tex]