The cost of producing [tex]$x$[/tex] soccer balls in thousands of dollars is represented by [tex]$h(x)=5x+6$[/tex]. The revenue is represented by [tex][tex]$k(x)=9x-2$[/tex][/tex].

Which expression represents the profit, [tex]$(k-h)(x)$[/tex], of producing soccer balls?

A. [tex]$14x-8$[/tex]

B. [tex][tex]$14x+4$[/tex][/tex]

C. [tex]$4x-8$[/tex]

D. [tex]$4x+4$[/tex]



Answer :

To determine the profit function [tex]\((k - h)(x)\)[/tex], we need to subtract the cost function [tex]\(h(x)\)[/tex] from the revenue function [tex]\(k(x)\)[/tex].

Let's start by writing down the given functions:

- Cost function: [tex]\(h(x) = 5x + 6\)[/tex]
- Revenue function: [tex]\(k(x) = 9x - 2\)[/tex]

The profit function is:

[tex]\[ (k - h)(x) = k(x) - h(x) \][/tex]

Substitute the given expressions for [tex]\(k(x)\)[/tex] and [tex]\(h(x)\)[/tex]:

[tex]\[ (k - h)(x) = (9x - 2) - (5x + 6) \][/tex]

Next, we need to simplify this expression:

First, distribute the negative sign:

[tex]\[ (9x - 2) - (5x + 6) = 9x - 2 - 5x - 6 \][/tex]

Combine like terms by grouping the [tex]\(x\)[/tex] terms and the constant terms separately:

Group the [tex]\(x\)[/tex] terms:
[tex]\[ 9x - 5x = 4x \][/tex]

Group the constant terms:
[tex]\[ -2 - 6 = -8 \][/tex]

Now combine these results to get the simplified expression:

[tex]\[ 4x - 8 \][/tex]

Therefore, the expression that represents the profit [tex]\((k - h)(x)\)[/tex] of producing soccer balls is:

[tex]\[ 4x - 8 \][/tex]

Among the given options, this matches option:

[tex]\[ \boxed{4x - 8} \][/tex]