Solution:
Meera's present age is [tex]x[/tex] years.
1. Meera's age 5 years from now is [tex](x + 5)[/tex] years.
2. Meera's age 3 years ago was [tex](x - 3)[/tex] years.
3. Meera's grandfather's age is [tex]6x[/tex] years.
4. Meera's grandmother's age is [tex](6x - 2)[/tex] years.
5. Meera's father's age is [tex](3x + 5)[/tex] years.

Example 12:
Change the following statement using expressions in a statement language:
"Given Salim scores [tex]r[/tex] runs in a cricket match. Nalin scores [tex](r + 15)[/tex] runs."
Solution:
In a cricket match, Nalin scores 15 more runs than Salim.

Exercise 9.3:
1. Write all the terms of each of the following algebraic expressions:
i. [tex]3 - 7x[/tex]
ii. [tex]2 - 5a + \frac{3}{2}b[/tex]
iii. [tex]3x^5 + 4y^3 - 7xy^2 + 3[/tex]
iv. [tex]2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9[/tex]



Answer :

Let's address Exercise 9.3 by breaking down each algebraic expression into its individual terms.

### (i) [tex]\(3 - 7x\)[/tex]
This expression has two terms:
- The constant term: [tex]\(3\)[/tex]
- The term involving [tex]\(x\)[/tex]: [tex]\(-7x\)[/tex]

Thus, the terms of the expression [tex]\(3 - 7x\)[/tex] are:
- [tex]\(3\)[/tex]
- [tex]\(-7x\)[/tex]

### (ii) [tex]\(2 - 5a + \frac{3}{2}b\)[/tex]
This expression has three terms:
- The constant term: [tex]\(2\)[/tex]
- The term involving [tex]\(a\)[/tex]: [tex]\(-5a\)[/tex]
- The term involving [tex]\(b\)[/tex]: [tex]\(\frac{3}{2}b\)[/tex]

Thus, the terms of the expression [tex]\(2 - 5a + \frac{3}{2}b\)[/tex] are:
- [tex]\(2\)[/tex]
- [tex]\(-5a\)[/tex]
- [tex]\(\frac{3}{2}b\)[/tex]

### (iii) [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex]
This expression has four terms:
- The term involving [tex]\(x^5\)[/tex]: [tex]\(3x^5\)[/tex]
- The term involving [tex]\(y^3\)[/tex]: [tex]\(4y^3\)[/tex]
- The term involving both [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex]: [tex]\(-7xy^2\)[/tex]
- The constant term: [tex]\(3\)[/tex]

Thus, the terms of the expression [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex] are:
- [tex]\(3x^5\)[/tex]
- [tex]\(4y^3\)[/tex]
- [tex]\(-7xy^2\)[/tex]
- [tex]\(3\)[/tex]

### (iv) [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex]
This expression has four terms:
- The term involving [tex]\(x^2\)[/tex]: [tex]\(2x^2\)[/tex]
- The term involving [tex]\(x\)[/tex] in the denominator: [tex]\(-\frac{3}{x}\)[/tex]
- The term involving [tex]\(x^2\)[/tex] in the denominator: [tex]\(\frac{5}{x^2}\)[/tex]
- The constant term: [tex]\(9\)[/tex]

Thus, the terms of the expression [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex] are:
- [tex]\(2x^2\)[/tex]
- [tex]\(-\frac{3}{x}\)[/tex]
- [tex]\(\frac{5}{x^2}\)[/tex]
- [tex]\(9\)[/tex]

In summary:
1. The terms of [tex]\(3 - 7x\)[/tex] are [tex]\(3\)[/tex] and [tex]\(-7x\)[/tex].
2. The terms of [tex]\(2 - 5a + \frac{3}{2}b\)[/tex] are [tex]\(2\)[/tex], [tex]\(-5a\)[/tex], and [tex]\(\frac{3}{2}b\)[/tex].
3. The terms of [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex] are [tex]\(3x^5\)[/tex], [tex]\(4y^3\)[/tex], [tex]\(-7xy^2\)[/tex], and [tex]\(3\)[/tex].
4. The terms of [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex] are [tex]\(2x^2\)[/tex], [tex]\(-\frac{3}{x}\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex], and [tex]\(9\)[/tex].