Answer :
Let's address Exercise 9.3 by breaking down each algebraic expression into its individual terms.
### (i) [tex]\(3 - 7x\)[/tex]
This expression has two terms:
- The constant term: [tex]\(3\)[/tex]
- The term involving [tex]\(x\)[/tex]: [tex]\(-7x\)[/tex]
Thus, the terms of the expression [tex]\(3 - 7x\)[/tex] are:
- [tex]\(3\)[/tex]
- [tex]\(-7x\)[/tex]
### (ii) [tex]\(2 - 5a + \frac{3}{2}b\)[/tex]
This expression has three terms:
- The constant term: [tex]\(2\)[/tex]
- The term involving [tex]\(a\)[/tex]: [tex]\(-5a\)[/tex]
- The term involving [tex]\(b\)[/tex]: [tex]\(\frac{3}{2}b\)[/tex]
Thus, the terms of the expression [tex]\(2 - 5a + \frac{3}{2}b\)[/tex] are:
- [tex]\(2\)[/tex]
- [tex]\(-5a\)[/tex]
- [tex]\(\frac{3}{2}b\)[/tex]
### (iii) [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex]
This expression has four terms:
- The term involving [tex]\(x^5\)[/tex]: [tex]\(3x^5\)[/tex]
- The term involving [tex]\(y^3\)[/tex]: [tex]\(4y^3\)[/tex]
- The term involving both [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex]: [tex]\(-7xy^2\)[/tex]
- The constant term: [tex]\(3\)[/tex]
Thus, the terms of the expression [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex] are:
- [tex]\(3x^5\)[/tex]
- [tex]\(4y^3\)[/tex]
- [tex]\(-7xy^2\)[/tex]
- [tex]\(3\)[/tex]
### (iv) [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex]
This expression has four terms:
- The term involving [tex]\(x^2\)[/tex]: [tex]\(2x^2\)[/tex]
- The term involving [tex]\(x\)[/tex] in the denominator: [tex]\(-\frac{3}{x}\)[/tex]
- The term involving [tex]\(x^2\)[/tex] in the denominator: [tex]\(\frac{5}{x^2}\)[/tex]
- The constant term: [tex]\(9\)[/tex]
Thus, the terms of the expression [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex] are:
- [tex]\(2x^2\)[/tex]
- [tex]\(-\frac{3}{x}\)[/tex]
- [tex]\(\frac{5}{x^2}\)[/tex]
- [tex]\(9\)[/tex]
In summary:
1. The terms of [tex]\(3 - 7x\)[/tex] are [tex]\(3\)[/tex] and [tex]\(-7x\)[/tex].
2. The terms of [tex]\(2 - 5a + \frac{3}{2}b\)[/tex] are [tex]\(2\)[/tex], [tex]\(-5a\)[/tex], and [tex]\(\frac{3}{2}b\)[/tex].
3. The terms of [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex] are [tex]\(3x^5\)[/tex], [tex]\(4y^3\)[/tex], [tex]\(-7xy^2\)[/tex], and [tex]\(3\)[/tex].
4. The terms of [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex] are [tex]\(2x^2\)[/tex], [tex]\(-\frac{3}{x}\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex], and [tex]\(9\)[/tex].
### (i) [tex]\(3 - 7x\)[/tex]
This expression has two terms:
- The constant term: [tex]\(3\)[/tex]
- The term involving [tex]\(x\)[/tex]: [tex]\(-7x\)[/tex]
Thus, the terms of the expression [tex]\(3 - 7x\)[/tex] are:
- [tex]\(3\)[/tex]
- [tex]\(-7x\)[/tex]
### (ii) [tex]\(2 - 5a + \frac{3}{2}b\)[/tex]
This expression has three terms:
- The constant term: [tex]\(2\)[/tex]
- The term involving [tex]\(a\)[/tex]: [tex]\(-5a\)[/tex]
- The term involving [tex]\(b\)[/tex]: [tex]\(\frac{3}{2}b\)[/tex]
Thus, the terms of the expression [tex]\(2 - 5a + \frac{3}{2}b\)[/tex] are:
- [tex]\(2\)[/tex]
- [tex]\(-5a\)[/tex]
- [tex]\(\frac{3}{2}b\)[/tex]
### (iii) [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex]
This expression has four terms:
- The term involving [tex]\(x^5\)[/tex]: [tex]\(3x^5\)[/tex]
- The term involving [tex]\(y^3\)[/tex]: [tex]\(4y^3\)[/tex]
- The term involving both [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex]: [tex]\(-7xy^2\)[/tex]
- The constant term: [tex]\(3\)[/tex]
Thus, the terms of the expression [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex] are:
- [tex]\(3x^5\)[/tex]
- [tex]\(4y^3\)[/tex]
- [tex]\(-7xy^2\)[/tex]
- [tex]\(3\)[/tex]
### (iv) [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex]
This expression has four terms:
- The term involving [tex]\(x^2\)[/tex]: [tex]\(2x^2\)[/tex]
- The term involving [tex]\(x\)[/tex] in the denominator: [tex]\(-\frac{3}{x}\)[/tex]
- The term involving [tex]\(x^2\)[/tex] in the denominator: [tex]\(\frac{5}{x^2}\)[/tex]
- The constant term: [tex]\(9\)[/tex]
Thus, the terms of the expression [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex] are:
- [tex]\(2x^2\)[/tex]
- [tex]\(-\frac{3}{x}\)[/tex]
- [tex]\(\frac{5}{x^2}\)[/tex]
- [tex]\(9\)[/tex]
In summary:
1. The terms of [tex]\(3 - 7x\)[/tex] are [tex]\(3\)[/tex] and [tex]\(-7x\)[/tex].
2. The terms of [tex]\(2 - 5a + \frac{3}{2}b\)[/tex] are [tex]\(2\)[/tex], [tex]\(-5a\)[/tex], and [tex]\(\frac{3}{2}b\)[/tex].
3. The terms of [tex]\(3x^5 + 4y^3 - 7xy^2 + 3\)[/tex] are [tex]\(3x^5\)[/tex], [tex]\(4y^3\)[/tex], [tex]\(-7xy^2\)[/tex], and [tex]\(3\)[/tex].
4. The terms of [tex]\(2x^2 - \frac{3}{x} + \frac{5}{x^2} + 9\)[/tex] are [tex]\(2x^2\)[/tex], [tex]\(-\frac{3}{x}\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex], and [tex]\(9\)[/tex].