Answer :

Answer:

[tex](x-2)(x-5)(x+1)[/tex]

Step-by-step explanation:

We are factoring the cubic expression:

[tex]x^3-6x^2+3x+10[/tex]

First, we can list out the factors of the constant term:

10   →  1, 2, 5, -1, -2, -5

and figure out which ones result in a zero:

(1)

[tex](1)^3-6(1)^2+3(1)+10 \stackrel{?}{=} 0[/tex]

               [tex]1-6+3+10 \stackrel{?}{=} 0[/tex]

                                   [tex]8\ne 0[/tex]   ❌

(2)

[tex](2)^3-6(2)^2+3(2)+10 \stackrel{?}{=} 0[/tex]

             [tex]8-24+6+10 \stackrel{?}{=} 0[/tex]

                                   [tex]0=0[/tex]   ✅

(5)

[tex](5)^3-6(5)^2+3(5)+10 \stackrel{?}{=} 0[/tex]

      [tex]125-150+15+10 \stackrel{?}{=} 0[/tex]

                                   [tex]0=0[/tex]   ✅

(-1)

[tex](-1)^3-6(-1)^2+3(-1)+10 \stackrel{?}{=} 0[/tex]

                     [tex]-1 -6 -3 + 10 \stackrel{?}{=} 0[/tex]

                                            [tex]0=0[/tex]   ✅

(-2)

[tex](-2)^3-6(-2)^2+3(-2)+10 \stackrel{?}{=} 0[/tex]

                   [tex]-8-24-6+10 \stackrel{?}{=} 0[/tex]

                                       [tex]-38\ne 0[/tex]   ❌

(-5)

[tex](-5)^3-6(-5)^2+3(-5)+10 \stackrel{?}{=} 0[/tex]

            [tex]-125-150-15+10 \stackrel{?}{=} 0[/tex]

                                      [tex]-280 \ne 0[/tex]   ❌

Now, we can multiply together factors with the same zeros as we found for the cubic:

[tex]\boxed{(x-2)(x-5)(x+1)}[/tex]

Multiplying this out, we can see that no coefficient is needed because this factored expression is equal to the cubic expression:

[tex](x-2)(x-5)(x+1) = x^3 -6x^2 + 3x + 10[/tex]