Answer :
Let's go through each question step by step.
### 1. Transformation of [tex]\( f(x) = 3^x \)[/tex]
- Original Function: [tex]\( f(x) = 3^x \)[/tex]
- Modified Function: [tex]\( f\left(\frac{1}{5} x\right) \)[/tex]
When [tex]\( f(x) \)[/tex] is replaced with [tex]\( f\left(\frac{1}{5} x\right) \)[/tex]:
- This is a horizontal stretch by a factor of 5.
No horizontal reflection is involved here.
### 2. Transformation of [tex]\( y = 2^{6x} \)[/tex]
- Original Function: [tex]\( y = 2^x \)[/tex]
- Modified Function: [tex]\( y = 2^{6x} \)[/tex]
When [tex]\( y = 2^x \)[/tex] is replaced with [tex]\( y = 2^{6x} \)[/tex]:
- This is a horizontal compression by a factor of [tex]\(\frac{1}{6}\)[/tex].
No horizontal reflection is involved here.
### 3. Transformation of [tex]\( y = 2^{-3x} \)[/tex]
- Original Function: [tex]\( y = 2^x \)[/tex]
- Modified Function: [tex]\( y = 2^{-3x} \)[/tex]
When [tex]\( y = 2^x \)[/tex] is replaced with [tex]\( y = 2^{-3x} \)[/tex]:
- This is a horizontal compression by a factor of [tex]\(\frac{1}{3}\)[/tex].
- Additionally, this involves a horizontal reflection over the y-axis.
### Summary of the Effects:
- For the function [tex]\( f(x) = 3^x \)[/tex] replaced with [tex]\( f\left(\frac{1}{5} x\right) \)[/tex]
- This is a [tex]\( \boxed{\text{horizontal stretch}} \)[/tex]
- Horizontal reflection over [tex]\( y \)[/tex]? [tex]\( \boxed{\text{False}} \)[/tex]
- For the function [tex]\( y = 2^{6x} \)[/tex] transformed from [tex]\( y = 2^x \)[/tex]
- This is a [tex]\( \boxed{\text{horizontal compression}} \)[/tex]
- Horizontal reflection over [tex]\( y \)[/tex]? [tex]\( \boxed{\text{False}} \)[/tex]
- For the function [tex]\( y = 2^{-3x} \)[/tex] transformed from [tex]\( y = 2^x \)[/tex]
- This is a [tex]\( \boxed{\text{horizontal compression}} \)[/tex]
- Horizontal reflection over [tex]\( y \)[/tex]? [tex]\( \boxed{\text{True}} \)[/tex]
### 1. Transformation of [tex]\( f(x) = 3^x \)[/tex]
- Original Function: [tex]\( f(x) = 3^x \)[/tex]
- Modified Function: [tex]\( f\left(\frac{1}{5} x\right) \)[/tex]
When [tex]\( f(x) \)[/tex] is replaced with [tex]\( f\left(\frac{1}{5} x\right) \)[/tex]:
- This is a horizontal stretch by a factor of 5.
No horizontal reflection is involved here.
### 2. Transformation of [tex]\( y = 2^{6x} \)[/tex]
- Original Function: [tex]\( y = 2^x \)[/tex]
- Modified Function: [tex]\( y = 2^{6x} \)[/tex]
When [tex]\( y = 2^x \)[/tex] is replaced with [tex]\( y = 2^{6x} \)[/tex]:
- This is a horizontal compression by a factor of [tex]\(\frac{1}{6}\)[/tex].
No horizontal reflection is involved here.
### 3. Transformation of [tex]\( y = 2^{-3x} \)[/tex]
- Original Function: [tex]\( y = 2^x \)[/tex]
- Modified Function: [tex]\( y = 2^{-3x} \)[/tex]
When [tex]\( y = 2^x \)[/tex] is replaced with [tex]\( y = 2^{-3x} \)[/tex]:
- This is a horizontal compression by a factor of [tex]\(\frac{1}{3}\)[/tex].
- Additionally, this involves a horizontal reflection over the y-axis.
### Summary of the Effects:
- For the function [tex]\( f(x) = 3^x \)[/tex] replaced with [tex]\( f\left(\frac{1}{5} x\right) \)[/tex]
- This is a [tex]\( \boxed{\text{horizontal stretch}} \)[/tex]
- Horizontal reflection over [tex]\( y \)[/tex]? [tex]\( \boxed{\text{False}} \)[/tex]
- For the function [tex]\( y = 2^{6x} \)[/tex] transformed from [tex]\( y = 2^x \)[/tex]
- This is a [tex]\( \boxed{\text{horizontal compression}} \)[/tex]
- Horizontal reflection over [tex]\( y \)[/tex]? [tex]\( \boxed{\text{False}} \)[/tex]
- For the function [tex]\( y = 2^{-3x} \)[/tex] transformed from [tex]\( y = 2^x \)[/tex]
- This is a [tex]\( \boxed{\text{horizontal compression}} \)[/tex]
- Horizontal reflection over [tex]\( y \)[/tex]? [tex]\( \boxed{\text{True}} \)[/tex]