Determine whether the following equation defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex]:

[tex]\[
xy + 3y = 8
\][/tex]



Answer :

To determine whether the equation defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], we need to solve for [tex]\( y \)[/tex] and analyze the solution. Here is a step-by-step explanation:

1. Start with the given equation:

[tex]\[ xy + 3y = 8 \][/tex]

2. Factor out [tex]\( y \)[/tex] on the left-hand side:

[tex]\[ y(x + 3) = 8 \][/tex]

3. Solve for [tex]\( y \)[/tex]:

Divide both sides of the equation by [tex]\( x + 3 \)[/tex]:

[tex]\[ y = \frac{8}{x + 3} \][/tex]

4. Analyze the solution:

The solution [tex]\( y = \frac{8}{x + 3} \)[/tex] expresses [tex]\( y \)[/tex] explicitly in terms of [tex]\( x \)[/tex]. This is a clear indication that [tex]\( y \)[/tex] is a function of [tex]\( x \)[/tex].

5. Check for any conditions or restrictions:

The expression [tex]\( y = \frac{8}{x + 3} \)[/tex] is defined for all [tex]\( x \)[/tex] except [tex]\( x = -3 \)[/tex], where the denominator would be zero and the expression would be undefined. However, this does not affect the conclusion that [tex]\( y \)[/tex] is a function of [tex]\( x \)[/tex] for all other values of [tex]\( x \)[/tex].

In conclusion, the equation [tex]\( xy + 3y = 8 \)[/tex] defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], because [tex]\( y \)[/tex] can be expressed as [tex]\( y = \frac{8}{x + 3} \)[/tex], which meets the criteria of a function [tex]\( y = f(x) \)[/tex].