Find the slope of the line through the points [tex]\((4,6)\)[/tex] and [tex]\((-6,2)\)[/tex].

A. -4
B. [tex]\(\frac{5}{2}\)[/tex]
C. -1
D. [tex]\(\frac{2}{5}\)[/tex]



Answer :

To determine the slope of the line that passes through the points [tex]\((4,6)\)[/tex] and [tex]\((-6,2)\)[/tex], we will use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here's a step-by-step process:

1. Identify the coordinates of the two points. Let [tex]\((x_1, y_1) = (4, 6)\)[/tex] and [tex]\((x_2, y_2) = (-6, 2)\)[/tex].

2. Substitute the values of the coordinates into the slope formula.

[tex]\[ \text{slope} = \frac{2 - 6}{-6 - 4} \][/tex]

3. Perform the subtraction in the numerator and the denominator.

- [tex]\(y_2 - y_1 = 2 - 6 = -4 \)[/tex]
- [tex]\(x_2 - x_1 = -6 - 4 = -10 \)[/tex]

4. Substitute the results back into the slope formula.

[tex]\[ \text{slope} = \frac{-4}{-10} \][/tex]

5. Simplify the fraction.

[tex]\[ \text{slope} = \frac{-4}{-10} = \frac{4}{10} = \frac{2}{5} \][/tex]

So, the slope of the line through the points [tex]\((4, 6)\)[/tex] and [tex]\((-6, 2)\)[/tex] is:

[tex]\[ \boxed{\frac{2}{5}} \][/tex]

Thus, the correct choice is:

D. [tex]\(\frac{2}{5}\)[/tex]