What is the solution of the system?

[tex]
\left\{
\begin{array}{c}
4x - y = -38 \\
x + y = 3
\end{array}
\right.
[/tex]

Enter your answer in the boxes.



Answer :

To solve the system of equations:

[tex]\[ \begin{cases} 4x - y = -38 \\ x + y = 3 \end{cases} \][/tex]

we will use the method of substitution or elimination. Let's go through the steps in detail:

Step 1: Solve one of the equations for one variable.

Let's solve the second equation for [tex]\( y \)[/tex]:

[tex]\[ x + y = 3 \][/tex]

Subtract [tex]\( x \)[/tex] from both sides:

[tex]\[ y = 3 - x \][/tex]

Step 2: Substitute this expression for [tex]\( y \)[/tex] into the first equation.

Now substitute [tex]\( y = 3 - x \)[/tex] into the first equation [tex]\( 4x - y = -38 \)[/tex]:

[tex]\[ 4x - (3 - x) = -38 \][/tex]

Simplify inside the parentheses:

[tex]\[ 4x - 3 + x = -38 \][/tex]

Combine like terms:

[tex]\[ 5x - 3 = -38 \][/tex]

Step 3: Solve for [tex]\( x \)[/tex].

Add 3 to both sides to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ 5x = -35 \][/tex]

Divide both sides by 5:

[tex]\[ x = -7 \][/tex]

Step 4: Substitute [tex]\( x = -7 \)[/tex] back into the expression for [tex]\( y \)[/tex] to find [tex]\( y \)[/tex].

Substitute [tex]\( x = -7 \)[/tex] into the equation [tex]\( y = 3 - x \)[/tex]:

[tex]\[ y = 3 - (-7) \][/tex]

Simplify:

[tex]\[ y = 3 + 7 \][/tex]

[tex]\[ y = 10 \][/tex]

Conclusion:

The solution to the system of equations is:
[tex]\[ x = -7 \][/tex]
[tex]\[ y = 10 \][/tex]

Therefore, the values in the boxes should be:
[tex]\[ x = -7 \quad \text{and} \quad y = 10 \][/tex]