The equation of a circle is [tex]x^2 + y^2 + 6y = 7[/tex]. What are the coordinates of the center and the length of the radius of the circle?

1. center [tex]\((0, 3)\)[/tex] and radius 4
2. center [tex]\((0, -3)\)[/tex] and radius 4
3. center [tex]\((0, 3)\)[/tex] and radius 16
4. center [tex]\((0, -3)\)[/tex] and radius 16



Answer :

To determine the center and radius of the circle given by the equation [tex]\( x^2 + y^2 + 6y = 7 \)[/tex], we need to convert the equation into the standard form of a circle's equation.

The standard form of a circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2, \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.

Here's a step-by-step process for converting the given equation into this form:

1. Start with the given equation:
[tex]\[ x^2 + y^2 + 6y = 7. \][/tex]

2. We need to complete the square for the term involving [tex]\(y\)[/tex]. Focus on the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 + 6y. \][/tex]

3. To complete the square, add and subtract the square of half the coefficient of [tex]\(y\)[/tex], which is [tex]\(\left(\frac{6}{2}\right)^2 = 9\)[/tex]:
[tex]\[ y^2 + 6y + 9 - 9. \][/tex]

This gives:
[tex]\[ y^2 + 6y + 9 - 9 = (y + 3)^2 - 9. \][/tex]

4. Substitute this back into the original equation:
[tex]\[ x^2 + (y + 3)^2 - 9 = 7. \][/tex]

5. Move the [tex]\(-9\)[/tex] to the right side of the equation to form the standard circle equation:
[tex]\[ x^2 + (y + 3)^2 = 16. \][/tex]

Now the equation is in the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].

From the equation [tex]\( x^2 + (y + 3)^2 = 16 \)[/tex], we can see that:
- The center [tex]\((h, k)\)[/tex] is [tex]\((0, -3)\)[/tex].
- The radius [tex]\(r\)[/tex] is [tex]\(\sqrt{16} = 4\)[/tex].

Hence, the coordinates of the center are [tex]\((0, -3)\)[/tex] and the radius is 4.

Among the provided options, the correct one is:

(2) center [tex]\((0, -3)\)[/tex] and radius 4.