A taxicab charges [tex]$\$[/tex] 1.45[tex]$ for the flat fee and $[/tex]\[tex]$ 0.55$[/tex] for each mile. Write an inequality to determine how many miles Ariel can travel if she has [tex]$\$[/tex] 35[tex]$ to spend.

A. $[/tex]\[tex]$ 1.45 + \$[/tex] 0.55x \geq \[tex]$ 35$[/tex]
B. [tex]$\$[/tex] 1.45 + \[tex]$ 0.55x \leq \$[/tex] 35[tex]$
C. $[/tex]\[tex]$ 0.55 + \$[/tex] 1.45x \geq \[tex]$ 35$[/tex]
D. [tex]$\$[/tex] 0.55 + \[tex]$ 1.45x \leq \$[/tex] 35$



Answer :

To determine how many miles Ariel can travel with \[tex]$35, considering the flat fee and the per-mile charge, we need to set up an inequality that accounts for the total cost constraint. 1. Identify the charges: - Flat fee: \$[/tex]1.45
- Cost per mile: \[tex]$0.55 2. Set up the inequality: - Let \( x \) represent the number of miles Ariel can travel. - The total cost for \( x \) miles can be written as the sum of the flat fee and the per-mile charges: \[ 1.45 + 0.55x \] - Ariel has \$[/tex]35 in total to spend, so the total cost should not exceed \[tex]$35. Thus, we set up the inequality: \[ 1.45 + 0.55x \leq 35 \] 3. Conclusion: The correct inequality expressing the constraint on how many miles Ariel can travel is: \[ 1.45 + 0.55x \leq 35 \] Therefore, the correct option is: \[ \$[/tex] 1.45 + \[tex]$ 0.55 x \leq \$[/tex] 35
\]