Type the correct answer in the box. Use numerals instead of words.

A toy is being constructed in the shape of a pyramid. The maximum amount of material to cover the sides and bottom of the pyramid is 250 square centimeters. The height of the toy is double the side length. What are the maximum dimensions to the nearest square centimeter for a square base and for a hexagonal base?

\begin{tabular}{|c|c|c|}
\hline
Shape of Base & Side Length & Height \\
\hline
square & [tex]$\square$[/tex] cm & [tex]$\square$[/tex] cm \\
\hline
regular hexagon & [tex]$\square$[/tex] cm & [tex]$\square$[/tex] cm \\
\hline
\end{tabular}



Answer :

To find the dimensions of the toy pyramid with maximum material usage of 250 square centimeters and the height being double the side length, we consider both a square base and a regular hexagonal base.

### Square Base Pyramid:
1. Formula for total surface area: The total surface area of a square pyramid includes the base area and the four triangular faces.
[tex]\[ \text{Total Surface Area} = \text{base area} + 4 \times \text{triangle area} \][/tex]
2. Base area: If the side length is [tex]\(a\)[/tex],
[tex]\[ \text{base area} = a^2 \][/tex]
3. Triangle area: Each triangular face has an area,
[tex]\[ \text{triangle area} = \frac{1}{2} \times a \times \text{height} \][/tex]
with the height of the pyramid being [tex]\(2a\)[/tex], thus,
[tex]\[ \text{triangle area} = \frac{1}{2} \times a \times (2a) = a^2 \][/tex]
4. Combine areas: The total surface area is,
[tex]\[ \text{Total Surface Area} = a^2 + 4 \times a^2 = 5a^2 \][/tex]
5. Set the surface area equal to maximum material:
[tex]\[ 5a^2 = 250 \implies a^2 = 50 \implies a = \sqrt{50} \approx 7 \][/tex]
6. Height: Since height [tex]\(= 2a\)[/tex],
[tex]\[ \text{Height} = 2 \times 7 = 14 \][/tex]

So, for a square base:
[tex]\[ \text{Side Length} = 7 \text{ cm, Height} = 14 \text{ cm} \][/tex]

### Hexagonal Base Pyramid:
1. Formula for total surface area: The total surface area of a hexagonal pyramid includes the base area and the six triangular faces.
[tex]\[ \text{Total Surface Area} = \text{base area} + 6 \times \text{triangle area} \][/tex]
2. Base area: If the side length is [tex]\(a\)[/tex], then the area of a regular hexagon is,
[tex]\[ \text{base area} = \frac{3\sqrt{3}}{2} a^2 \][/tex]
3. Triangle area: Each triangular face has an area,
[tex]\[ \text{triangle area} = \frac{1}{2} \times a \times \text{height} \][/tex]
with the height of the pyramid being [tex]\(2a\)[/tex], thus,
[tex]\[ \text{triangle area} = \frac{1}{2} \times a \times (2a) = a^2 \][/tex]
4. Combine areas: The total surface area is,
[tex]\[ \text{Total Surface Area} = \frac{3\sqrt{3}}{2} a^2 + 6a^2 = \left(\frac{3\sqrt{3}}{2} + 6\right) a^2 \][/tex]
5. Set the surface area equal to maximum material:
[tex]\[ 250 = \left(\frac{3\sqrt{3}}{2} + 6\right) a^2 \][/tex]
Solving for [tex]\(a\)[/tex] (side length):
[tex]\[ a \approx 5 \][/tex]
6. Height: Since height [tex]\(= 2a\)[/tex],
[tex]\[ \text{Height} = 2 \times 5 = 11 \][/tex]

So, for a hexagonal base:
[tex]\[ \text{Side Length} = 5 \text{ cm, Height} = 11 \text{ cm} \][/tex]

Thus, the correct dimensions to the nearest square centimeter are:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Shape of Base & Side Length & Height \\ \hline square & 7 cm & 14 cm \\ \hline regular hexagon & 5 cm & 11 cm \\ \hline \end{tabular} \][/tex]