The measure of angle BAC can be calculated using the equation [tex]\sin^{-1}\left(\frac{3.1}{4.5}\right) = x[/tex].

What is the measure of angle BAC? Round to the nearest whole degree.

A. [tex]$0^{\circ}$[/tex]
B. [tex]$1^{\circ}$[/tex]
C. [tex]$44^{\circ}$[/tex]
D. [tex]$48^{\circ}$[/tex]



Answer :

To determine the measure of angle [tex]\( \angle BAC \)[/tex], we can use trigonometry, specifically the sine function. Here's the step-by-step process:

1. Identify the given quantities:
- Opposite side ([tex]\( \text{opposite} \)[/tex]) = 3.1 units
- Hypotenuse ([tex]\( \text{hypotenuse} \)[/tex]) = 4.5 units

2. Set up the equation:
- The given equation to find the angle [tex]\( x \)[/tex] is [tex]\( \sin^{-1}\left(\frac{3.1}{4.5}\right) = x \)[/tex].

3. Compute the ratio:
- Calculate the ratio of the opposite side to the hypotenuse:
[tex]\[ \frac{3.1}{4.5} \approx 0.68888889 \][/tex]

4. Apply the arcsine function:
- Find the angle [tex]\( x \)[/tex] whose sine is the ratio calculated:
[tex]\[ x = \sin^{-1}(0.68888889) \][/tex]
- This gives us an angle in radians. Let's denote this angle in radians as [tex]\( \text{angle\_rad} \)[/tex].

5. Convert radians to degrees:
- Convert [tex]\( \text{angle\_rad} \)[/tex] to degrees (since the question asks for the measure in degrees):
[tex]\[ \text{angle\_deg} = \text{angle\_rad} \times \frac{180}{\pi} \][/tex]
- The exact value of [tex]\( \text{angle\_deg} \)[/tex] is approximately 43.542 degrees.

6. Round to the nearest whole degree:
- Rounding [tex]\( 43.542 \)[/tex] degrees to the nearest whole number gives us [tex]\( 44 \)[/tex] degrees.

Therefore, the measure of [tex]\( \angle BAC \)[/tex] is [tex]\( \boxed{44 \text{ degrees}} \)[/tex].