Answer :
To determine the ranking of the stores from cheapest to most expensive sale price for the digital camera, let's calculate the final sale price for each store based on the given original prices and discounts.
1. Store A:
- Original Price: [tex]\(\$99.99\)[/tex]
- Discount: [tex]\(15\%\)[/tex]
- Sale Price = [tex]\(99.99 \times (1 - 0.15) = 99.99 \times 0.85 = 84.9915\)[/tex]
2. Store B:
- Original Price: [tex]\(\$95.99\)[/tex]
- Discount: [tex]\(12\%\)[/tex]
- Sale Price = [tex]\(95.99 \times (1 - 0.12) = 95.99 \times 0.88 = 84.4712\)[/tex]
3. Store C:
- Original Price: [tex]\(\$90.99\)[/tex]
- Discount: [tex]\(10\%\)[/tex]
- Sale Price = [tex]\(90.99 \times (1 - 0.10) = 90.99 \times 0.90 = 81.891\)[/tex]
4. Store D:
- Original Price: [tex]\(\$89.99\)[/tex]
- Successive Discounts: [tex]\(5\%\)[/tex] and [tex]\(5\%\)[/tex]
- Applying the first discount: [tex]\(89.99 \times (1 - 0.05) = 89.99 \times 0.95 = 85.4905\)[/tex]
- Applying the second discount: [tex]\(85.4905 \times (1 - 0.05) = 85.4905 \times 0.95 = 81.216\)[/tex]
Now, comparing the sale prices:
- Store A: [tex]\(84.9915\)[/tex]
- Store B: [tex]\(84.4712\)[/tex]
- Store C: [tex]\(81.891\)[/tex]
- Store D: [tex]\(81.216\)[/tex]
Ranking these prices from the cheapest to the most expensive, we get:
- Store D: [tex]\(81.216\)[/tex]
- Store C: [tex]\(81.891\)[/tex]
- Store B: [tex]\(84.4712\)[/tex]
- Store A: [tex]\(84.9915\)[/tex]
Therefore, the ranking of the stores from cheapest to most expensive sale price is:
d. [tex]\(D, C, B, A\)[/tex]
So, the correct answer is d. [tex]\(D, C, B, A\)[/tex].
1. Store A:
- Original Price: [tex]\(\$99.99\)[/tex]
- Discount: [tex]\(15\%\)[/tex]
- Sale Price = [tex]\(99.99 \times (1 - 0.15) = 99.99 \times 0.85 = 84.9915\)[/tex]
2. Store B:
- Original Price: [tex]\(\$95.99\)[/tex]
- Discount: [tex]\(12\%\)[/tex]
- Sale Price = [tex]\(95.99 \times (1 - 0.12) = 95.99 \times 0.88 = 84.4712\)[/tex]
3. Store C:
- Original Price: [tex]\(\$90.99\)[/tex]
- Discount: [tex]\(10\%\)[/tex]
- Sale Price = [tex]\(90.99 \times (1 - 0.10) = 90.99 \times 0.90 = 81.891\)[/tex]
4. Store D:
- Original Price: [tex]\(\$89.99\)[/tex]
- Successive Discounts: [tex]\(5\%\)[/tex] and [tex]\(5\%\)[/tex]
- Applying the first discount: [tex]\(89.99 \times (1 - 0.05) = 89.99 \times 0.95 = 85.4905\)[/tex]
- Applying the second discount: [tex]\(85.4905 \times (1 - 0.05) = 85.4905 \times 0.95 = 81.216\)[/tex]
Now, comparing the sale prices:
- Store A: [tex]\(84.9915\)[/tex]
- Store B: [tex]\(84.4712\)[/tex]
- Store C: [tex]\(81.891\)[/tex]
- Store D: [tex]\(81.216\)[/tex]
Ranking these prices from the cheapest to the most expensive, we get:
- Store D: [tex]\(81.216\)[/tex]
- Store C: [tex]\(81.891\)[/tex]
- Store B: [tex]\(84.4712\)[/tex]
- Store A: [tex]\(84.9915\)[/tex]
Therefore, the ranking of the stores from cheapest to most expensive sale price is:
d. [tex]\(D, C, B, A\)[/tex]
So, the correct answer is d. [tex]\(D, C, B, A\)[/tex].