Convert the following number into correct scientific notation.
[tex]\[ 0.0602 \times 10^{25} \][/tex]

[tex]\[ [?] \times 10^{[?]} \][/tex]

Enter the coefficient in the green box and the exponent in the yellow box.

Coefficient: [tex]\(\square\)[/tex]
Exponent: [tex]\(\square\)[/tex]

Enter



Answer :

To convert the expression [tex]\( 0.0602 \times 10^{25} \)[/tex] into scientific notation, we need to follow these steps carefully:

1. Identify the given number: Here, the given number is [tex]\( 0.0602 \)[/tex].

2. Shift the decimal point: We need to write [tex]\( 0.0602 \)[/tex] in a form that fits the standard notation of [tex]\( a \times 10^n \)[/tex], where [tex]\( 1 \leq a < 10 \)[/tex]. To do so, we move the decimal point in [tex]\( 0.0602 \)[/tex] one place to the right, changing it to [tex]\( 0.602 \)[/tex].

3. Adjust the exponent accordingly: When we moved the decimal point to the right, we essentially multiplied [tex]\( 0.0602 \)[/tex] by [tex]\( 10 \)[/tex]. To balance this, we need to decrease the original exponent [tex]\( 25 \)[/tex] by 1. Hence, the new exponent becomes [tex]\( 24 \)[/tex].

Thus, in scientific notation, [tex]\( 0.0602 \times 10^{25} \)[/tex] becomes [tex]\( 0.602 \times 10^{24} \)[/tex].

The coefficient is [tex]\( 0.602 \)[/tex], and the exponent is [tex]\( 24 \)[/tex].

So, the values should be entered in the respective boxes as:
- Coefficient: [tex]\( 0.602 \)[/tex]
- Exponent: [tex]\( 24 \)[/tex]