Consider circle [tex]\( T \)[/tex] with radius 24 in. and [tex]\( \theta=\frac{5 \pi}{6} \)[/tex] radians.

What is the length of minor arc [tex]\( SV \)[/tex]?

A. [tex]\( 20 \pi \)[/tex] in.
B. [tex]\( 28 \pi \)[/tex] in.
C. [tex]\( 40 \pi \)[/tex] in.
D. [tex]\( 63 \pi \)[/tex] in.



Answer :

Step-by-Step Solution:

To find the length of the minor arc [tex]\(SV\)[/tex] in circle [tex]\(T\)[/tex] with a radius of [tex]\(24\)[/tex] inches and an angle [tex]\(\theta = \frac{5\pi}{6}\)[/tex] radians, follow these steps:

1. Understand the problem:
- Radius of the circle, [tex]\(r = 24\)[/tex] inches.
- Central angle in radians, [tex]\(\theta = \frac{5\pi}{6}\)[/tex].

2. Recall the formula for the arc length:
The formula for the arc length [tex]\(L\)[/tex] of a circle is given by:
[tex]\[ L = r \cdot \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the central angle in radians.

3. Substitute the given values into the formula:
- [tex]\(r = 24\)[/tex] inches.
- [tex]\(\theta = \frac{5\pi}{6}\)[/tex] radians.

So,
[tex]\[ L = 24 \cdot \frac{5\pi}{6} \][/tex]

4. Perform the multiplication:
First, multiply the constants:
[tex]\[ 24 \cdot \frac{5}{6} = 24 \cdot \frac{5}{6} = 4 \cdot 5 = 20 \][/tex]

Therefore,
[tex]\[ L = 20 \cdot \pi = 20\pi \][/tex]

Conclusion:
The length of the minor arc [tex]\(SV\)[/tex] is [tex]\(20\pi\)[/tex] inches.

Answer:
[tex]\[ 20\pi \, \text{in.} \][/tex]