Factor the trinomial.

[tex]\[ x^2 - x - 20 \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. [tex]\[ x^2 - x - 20 = \square \][/tex]

B. [tex]\[ x^2 - x - 20 \][/tex] is prime.



Answer :

To factor the trinomial [tex]\( x^2 - x - 20 \)[/tex], we need to express it as the product of two binomials of the form [tex]\((x + a)(x + b)\)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.

1. Identify the coefficients:

The trinomial is given as [tex]\( x^2 - x - 20 \)[/tex], so:
- The coefficient of [tex]\( x^2 \)[/tex] is [tex]\( 1 \)[/tex].
- The coefficient of [tex]\( x \)[/tex] is [tex]\( -1 \)[/tex].
- The constant term is [tex]\( -20 \)[/tex].

2. Find two numbers that multiply to the constant term and add up to the coefficient of [tex]\( x \)[/tex]:

We need two numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex] such that:
- [tex]\( a \cdot b = -20 \)[/tex]
- [tex]\( a + b = -1 \)[/tex]

By examining the factor pairs of [tex]\(-20\)[/tex]:
- [tex]\((-1, 20)\)[/tex]
- [tex]\((1, -20)\)[/tex]
- [tex]\((-2, 10)\)[/tex]
- [tex]\((2, -10)\)[/tex]
- [tex]\((-4, 5)\)[/tex]
- [tex]\((4, -5)\)[/tex]

The pair that adds up to [tex]\(-1\)[/tex] is [tex]\((4, -5)\)[/tex].

3. Write the binomials:

Since [tex]\( a = 4 \)[/tex] and [tex]\( b = -5 \)[/tex], we can write the trinomial as the product of two binomials:
[tex]\[ (x + 4)(x - 5) \][/tex]

Therefore, the trinomial [tex]\( x^2 - x - 20 \)[/tex] factors to:
[tex]\[ (x - 5)(x + 4) \][/tex]

So, the correct choice is:
A. [tex]\( x^2 - x - 20 = (x - 5)(x + 4) \)[/tex]