4. If [tex]\left(\frac{a^{-1} b^2}{a^2 b^{-4}}\right)^7 \div\left(\frac{a^3 b^{-5}}{a^{-2} b^3}\right)^{-5}=a^x \cdot b^y[/tex], find [tex]x+y[/tex].



Answer :

To solve the given problem, we'll break it down into manageable steps and simplify the expressions. Let's start with the given expression:

[tex]\[ \left(\frac{a^{-1}b^2}{a^2b^{-4}}\right)^7 \div \left(\frac{a^3b^{-5}}{a^{-2}b^3}\right)^{-5} \][/tex]

### Step 1: Simplify the Inner Expressions

First, simplify the numerator and denominator inside each fraction individually.

#### Expression 1: [tex]\(\frac{a^{-1}b^2}{a^2b^{-4}}\)[/tex]

Simplify the fraction:

[tex]\[ \frac{a^{-1}b^2}{a^2b^{-4}} = a^{-1 - 2} \cdot b^{2 - (-4)} = a^{-3} \cdot b^6 \][/tex]

#### Expression 2: [tex]\(\frac{a^3b^{-5}}{a^{-2}b^3}\)[/tex]

Simplify the fraction:

[tex]\[ \frac{a^3b^{-5}}{a^{-2}b^3} = a^{3 - (-2)} \cdot b^{-5 - 3} = a^5 \cdot b^{-8} \][/tex]

### Step 2: Raise the Simplified Fractions to the Given Powers

Next, raise the simplified expressions to their respective exponents.

#### Raising Expression 1 to the 7th Power:

[tex]\[ (a^{-3}b^6)^7 = a^{-3 \cdot 7} \cdot b^{6 \cdot 7} = a^{-21} \cdot b^{42} \][/tex]

#### Raising Expression 2 to the -5th Power:

[tex]\[ (a^5b^{-8})^{-5} = (a^5)^{-5} \cdot (b^{-8})^{-5} = a^{5 \cdot (-5)} \cdot b^{-8 \cdot (-5)} = a^{-25} \cdot b^{40} \][/tex]

### Step 3: Combine the Expressions

Divide the two expressions:

[tex]\[ \frac{a^{-21}b^{42}}{a^{-25}b^{40}} \][/tex]

This simplifies to:

[tex]\[ a^{-21 - (-25)} \cdot b^{42 - 40} = a^{-21 + 25} \cdot b^{42 - 40} = a^4 \cdot b^2 \][/tex]

### Step 4: Determine the Exponents and Sum

The expression simplifies to [tex]\(a^4 \cdot b^2\)[/tex]. Thus, the exponents are:

[tex]\[ x = 4 \quad \text{and} \quad y = 2 \][/tex]

Finally, calculate [tex]\(x + y\)[/tex]:

[tex]\[ x + y = 4 + 2 = 6 \][/tex]

### Conclusion

[tex]\[ \boxed{6} \][/tex]