Select the correct answer.

What is this expression in simplest form?
[tex]\[ \frac{x+2}{4x^2+5x+1} \cdot \frac{4x+1}{x^2-4} \][/tex]

A. [tex]\(\frac{1}{(x+1)(x-2)}\)[/tex]

B. [tex]\(\frac{x}{(x-2)}\)[/tex]

C. [tex]\(\frac{4x+1}{(x+1)(x-2)}\)[/tex]

D. [tex]\(\frac{4x+1}{x-2}\)[/tex]



Answer :

Let's find the simplest form of the expression

[tex]\[ \frac{x+2}{4 x^2+5 x+1} \cdot \frac{4 x+1}{x^2-4} \][/tex]

First, we need to factorize the denominators and the numerators where possible.

1. Factorize [tex]\(4 x^2 + 5 x + 1\)[/tex]:
[tex]\[ 4 x^2 + 5 x + 1 = (4x + 1)(x + 1) \][/tex]

2. Factorize [tex]\(x^2 - 4\)[/tex]:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]

So the expression becomes:
[tex]\[ \frac{x+2}{(4x + 1)(x + 1)} \cdot \frac{4x + 1}{(x - 2)(x + 2)} \][/tex]

We can cancel out the common factors in the numerator and the denominator. Here, [tex]\(x + 2\)[/tex] in the first numerator and [tex]\(x + 2\)[/tex] in the second denominator cancel out. Similarly, [tex]\(4x + 1\)[/tex] in the second numerator and [tex]\(4x + 1\)[/tex] in the first denominator cancel out. The simplified expression is:

[tex]\[ \frac{1}{(x + 1)(x - 2)} \][/tex]

Thus, the simplest form of the given expression is:
[tex]\[ \boxed{\frac{1}{(x + 1)(x - 2)}} \][/tex]

Therefore, the correct answer is:
A. [tex]\(\frac{1}{(x+1)(x-2)}\)[/tex]