Select the correct answer from each drop-down menu.

Consider this quotient:
[tex]\[ \frac{3x^2 - 27x}{2x^3 + 13x - 7} \div \frac{3x}{4x^3 - 1} \][/tex]

The simplest form of this quotient has a numerator of [tex]$\square$[/tex], a denominator of [tex]$\square$[/tex], and does not exist when [tex]$x = \square$[/tex].



Answer :

Sure, let's break this problem down step by step.

Given the quotient:
[tex]\[ \frac{3 x^2 - 27 x}{2 x^3 + 13 x - 7} \div \frac{3 x}{4 x^3 - 1} \][/tex]

First, rewrite the division as multiplication by the reciprocal:
[tex]\[ \frac{3 x^2 - 27 x}{2 x^3 + 13 x - 7} \times \frac{4 x^3 - 1}{3 x} \][/tex]

Next, multiply the numerators and the denominators:
[tex]\[ \frac{(3 x^2 - 27 x) \times (4 x^3 - 1)}{(2 x^3 + 13 x - 7) \times (3 x)} \][/tex]

To simplify the quotient, we factor the expressions and find common factors.

The numerator and the denominator of the simplified expression will be:
Numerator: [tex]\((x - 9) \times (4 x^3 - 1)\)[/tex]

Denominator: [tex]\(2 x^3 + 13 x - 7\)[/tex]

In the simplified form, the quotient does not exist when the denominator is zero.

To determine the values of [tex]\(x\)[/tex] that make the denominator zero, we solve:

[tex]\[2 x^3 + 13 x - 7 = 0\][/tex]

The solutions to this are:
[tex]\[ \left\{-\frac{13}{6\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + \left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}, -\frac{\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2} + \frac{13}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + I\left(\frac{13\sqrt{3}}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + \frac{\sqrt{3}\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2}\right), -\frac{\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2} + \frac{13}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + I\left(-\frac{\sqrt{3}\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2} - \frac{13\sqrt{3}}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}\right)\right\} \][/tex]

These values of [tex]\(x\)[/tex] will make the whole expression undefined.

Therefore, the answer to the question is:

The simplest form of the quotient has a numerator of:
[tex]\[ (x - 9) \times (4 x^3 - 1) \][/tex]

The expression does not exist when [tex]\(x =\)[/tex]:
[tex]\[ \left\{-\frac{13}{6\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + \left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}, -\frac{\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2} + \frac{13}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + I\left(\frac{13\sqrt{3}}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + \frac{\sqrt{3}\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2}\right), -\frac{\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2} + \frac{13}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}} + I\left(-\frac{\sqrt{3}\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}{2} - \frac{13\sqrt{3}}{12\left(\frac{7}{4} + \frac{\sqrt{17151}}{36}\right)^{\frac{1}{3}}}\right)\right\} \][/tex]

And a denominator of:
[tex]\[ 2 x^3 + 13 x - 7 \][/tex]

By matching the correct terms in the given dropdown sequence, you can accurately fill out the required answer.