Select the correct answer.

Based on the data in this two-way table, which statement is true?
[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
Type of Flower & Red & Pink & Yellow & Total \\
\hline
Rose & 40 & 20 & 45 & 105 \\
\hline
Hibiscus & 80 & 40 & 90 & 210 \\
\hline
Total & 120 & 60 & 135 & 315 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\( P \)[/tex] (flower is yellow | flower is rose) [tex]\(\neq\)[/tex] [tex]\( P \)[/tex] (flower is yellow)
B. [tex]\( P \)[/tex] (flower is hibiscus | color is red) [tex]\( = P \)[/tex] (flower is hibiscus)
C. [tex]\( P \)[/tex] (flower is rose | color is red) [tex]\( = P \)[/tex] (flower is red)
D. [tex]\( P \)[/tex] (flower is hibiscus | color is pink) [tex]\(\neq\)[/tex] [tex]\( P \)[/tex] (flower is hibiscus)



Answer :

Let's analyze the statements given the data in the two-way table.

We have the following information:
- Number of red roses: 40
- Number of pink roses: 20
- Number of yellow roses: 45
- Number of red hibiscus: 80
- Number of pink hibiscus: 40
- Number of yellow hibiscus: 90
- Total red flowers: 120
- Total pink flowers: 60
- Total yellow flowers: 135
- Total roses: 105
- Total hibiscus: 210
- Total flowers: 315

We'll evaluate each statement step-by-step.

### Statement A: [tex]\( P(\text{flower is yellow} \mid \text{flower is rose}) \neq P(\text{flower is yellow}) \)[/tex]

1. Calculate [tex]\( P(\text{flower is yellow} \mid \text{flower is rose}) \)[/tex]:
[tex]\( P(\text{yellow} \mid \text{rose}) = \frac{\text{Number of yellow roses}}{\text{Total number of roses}} = \frac{45}{105} = \frac{3}{7} \)[/tex]

2. Calculate [tex]\( P(\text{flower is yellow}) \)[/tex]:
[tex]\( P(\text{yellow}) = \frac{\text{Total number of yellow flowers}}{\text{Total number of flowers}} = \frac{135}{315} = \frac{9}{21} = \frac{3}{7} \)[/tex]

We find that [tex]\( P(\text{yellow} \mid \text{rose}) = \frac{3}{7} \)[/tex] and [tex]\( P(\text{yellow}) = \frac{3}{7} \)[/tex]. Therefore, Statement A is false.

### Statement B: [tex]\( P(\text{flower is hibiscus} \mid \text{color is red}) = P(\text{flower is hibiscus}) \)[/tex]

1. Calculate [tex]\( P(\text{flower is hibiscus} \mid \text{color is red}) \)[/tex]:
[tex]\( P(\text{hibiscus} \mid \text{red}) = \frac{\text{Number of red hibiscus}}{\text{Total number of red flowers}} = \frac{80}{120} = \frac{8}{12} = \frac{2}{3} \)[/tex]

2. Calculate [tex]\( P(\text{flower is hibiscus}) \)[/tex]:
[tex]\( P(\text{hibiscus}) = \frac{\text{Total number of hibiscus}}{\text{Total number of flowers}} = \frac{210}{315} = \frac{2}{3} \)[/tex]

We find that [tex]\( P(\text{hibiscus} \mid \text{red}) = \frac{2}{3} \)[/tex] and [tex]\( P(\text{hibiscus}) = \frac{2}{3} \)[/tex]. Therefore, Statement B is true.

### Statement C: [tex]\( P(\text{flower is rose} \mid \text{color is red}) = P(\text{flower is red}) \)[/tex]

1. Calculate [tex]\( P(\text{flower is rose} \mid \text{color is red}) \)[/tex]:
[tex]\( P(\text{rose} \mid \text{red}) = \frac{\text{Number of red roses}}{\text{Total number of red flowers}} = \frac{40}{120} = \frac{1}{3} \)[/tex]

2. Calculate [tex]\( P(\text{flower is red}) \)[/tex]:
[tex]\( P(\text{red}) = \frac{\text{Total number of red flowers}}{\text{Total number of flowers}} = \frac{120}{315} = \frac{8}{21} \)[/tex]

We find that [tex]\( P(\text{rose} \mid \text{red}) = \frac{1}{3} \neq \frac{8}{21} \)[/tex]. Therefore, Statement C is false.

### Statement D: [tex]\( P(\text{flower is hibiscus} \mid \text{color is pink}) \neq P(\text{flower is hibiscus}) \)[/tex]

1. Calculate [tex]\( P(\text{flower is hibiscus} \mid \text{color is pink}) \)[/tex]:
[tex]\( P(\text{hibiscus} \mid \text{pink}) = \frac{\text{Number of pink hibiscus}}{\text{Total number of pink flowers}} = \frac{40}{60} = \frac{2}{3} \)[/tex]

2. Calculate [tex]\( P(\text{flower is hibiscus}) \)[/tex] (as done previously):
[tex]\( P(\text{hibiscus}) = \frac{210}{315} = \frac{2}{3} \)[/tex]

We find that [tex]\( P(\text{hibiscus} \mid \text{pink}) = \frac{2}{3} \)[/tex] and [tex]\( P(\text{hibiscus}) = \frac{2}{3} \)[/tex]. Therefore, Statement D is false.

Thus, the correct statement is:
B. [tex]\( P(\text{flower is hibiscus} \mid \text{color is red}) = P(\text{flower is hibiscus}) \)[/tex]