Answer :
To determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] for the polynomial [tex]\(2x^3 - ax^2 + bx + 12\)[/tex], given that it is divisible by [tex]\((x + 1)\)[/tex] and [tex]\((x - 4)\)[/tex], we can follow these steps:
1. Substitute [tex]\(x = -1\)[/tex]:
Since [tex]\((x + 1)\)[/tex] is a factor of the polynomial, substituting [tex]\(x = -1\)[/tex] should make the polynomial equal to zero.
[tex]\[ 2(-1)^3 - a(-1)^2 + b(-1) + 12 = 0 \][/tex]
Simplify the equation:
[tex]\[ -2 - a - b + 12 = 0 \][/tex]
Combine like terms:
[tex]\[ 10 - a - b = 0 \][/tex]
Rearrange to isolate [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + b = 10 \][/tex]
2. Substitute [tex]\(x = 4\)[/tex]:
Similarly, since [tex]\((x - 4)\)[/tex] is a factor of the polynomial, substituting [tex]\(x = 4\)[/tex] should also make the polynomial equal to zero.
[tex]\[ 2(4)^3 - a(4)^2 + b(4) + 12 = 0 \][/tex]
Simplify the equation:
[tex]\[ 2 \cdot 64 - 16a + 4b + 12 = 0 \][/tex]
[tex]\[ 128 - 16a + 4b + 12 = 0 \][/tex]
Combine like terms:
[tex]\[ 140 - 16a + 4b = 0 \][/tex]
Rearrange to isolate [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ 16a - 4b = 140 \][/tex]
Simplify by dividing the entire equation by 4:
[tex]\[ 4a - b = 35 \][/tex]
3. Solve the system of linear equations:
Now we have two equations:
[tex]\[ \begin{cases} a + b = 10 \\ 4a - b = 35 \end{cases} \][/tex]
Add the two equations to eliminate [tex]\(b\)[/tex]:
[tex]\[ (a + b) + (4a - b) = 10 + 35 \][/tex]
[tex]\[ 5a = 45 \][/tex]
Solve for [tex]\(a\)[/tex]:
[tex]\[ a = 9 \][/tex]
Substitute [tex]\(a = 9\)[/tex] back into the first equation:
[tex]\[ 9 + b = 10 \][/tex]
Solve for [tex]\(b\)[/tex]:
[tex]\[ b = 1 \][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are [tex]\(9\)[/tex] and [tex]\(1\)[/tex] respectively. The correct answer is:
[tex]\[ \boxed{9, 1} \][/tex]
1. Substitute [tex]\(x = -1\)[/tex]:
Since [tex]\((x + 1)\)[/tex] is a factor of the polynomial, substituting [tex]\(x = -1\)[/tex] should make the polynomial equal to zero.
[tex]\[ 2(-1)^3 - a(-1)^2 + b(-1) + 12 = 0 \][/tex]
Simplify the equation:
[tex]\[ -2 - a - b + 12 = 0 \][/tex]
Combine like terms:
[tex]\[ 10 - a - b = 0 \][/tex]
Rearrange to isolate [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + b = 10 \][/tex]
2. Substitute [tex]\(x = 4\)[/tex]:
Similarly, since [tex]\((x - 4)\)[/tex] is a factor of the polynomial, substituting [tex]\(x = 4\)[/tex] should also make the polynomial equal to zero.
[tex]\[ 2(4)^3 - a(4)^2 + b(4) + 12 = 0 \][/tex]
Simplify the equation:
[tex]\[ 2 \cdot 64 - 16a + 4b + 12 = 0 \][/tex]
[tex]\[ 128 - 16a + 4b + 12 = 0 \][/tex]
Combine like terms:
[tex]\[ 140 - 16a + 4b = 0 \][/tex]
Rearrange to isolate [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ 16a - 4b = 140 \][/tex]
Simplify by dividing the entire equation by 4:
[tex]\[ 4a - b = 35 \][/tex]
3. Solve the system of linear equations:
Now we have two equations:
[tex]\[ \begin{cases} a + b = 10 \\ 4a - b = 35 \end{cases} \][/tex]
Add the two equations to eliminate [tex]\(b\)[/tex]:
[tex]\[ (a + b) + (4a - b) = 10 + 35 \][/tex]
[tex]\[ 5a = 45 \][/tex]
Solve for [tex]\(a\)[/tex]:
[tex]\[ a = 9 \][/tex]
Substitute [tex]\(a = 9\)[/tex] back into the first equation:
[tex]\[ 9 + b = 10 \][/tex]
Solve for [tex]\(b\)[/tex]:
[tex]\[ b = 1 \][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are [tex]\(9\)[/tex] and [tex]\(1\)[/tex] respectively. The correct answer is:
[tex]\[ \boxed{9, 1} \][/tex]