Answer :

To solve the problem, we are looking for a number [tex]\( x \)[/tex] such that:

[tex]\[ x \times 13^{-6} = \left(\frac{1}{13}\right)^9 \][/tex]

First, let's rewrite the expression [tex]\(\left(\frac{1}{13}\right)^9\)[/tex] using properties of exponents:

[tex]\[ \left(\frac{1}{13}\right)^9 = 13^{-9} \][/tex]

So our equation now becomes:

[tex]\[ x \times 13^{-6} = 13^{-9} \][/tex]

To isolate [tex]\( x \)[/tex], we divide both sides of the equation by [tex]\( 13^{-6} \)[/tex]:

[tex]\[ x = \frac{13^{-9}}{13^{-6}} \][/tex]

Using the properties of exponents ([tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]), we can simplify the right side of the equation:

[tex]\[ x = 13^{-9 + 6} \][/tex]

[tex]\[ x = 13^{-3} \][/tex]

Therefore, the number we need to multiply [tex]\( 13^{-6} \)[/tex] by to get [tex]\( \left(\frac{1}{13}\right)^9 \)[/tex] is [tex]\( 13^{-3} \)[/tex].

To provide the numerical value of [tex]\( 13^{-3} \)[/tex]:

[tex]\[ 13^{-3} = \frac{1}{13^3} = \frac{1}{2197} \][/tex]

Converting this division result to a decimal:

[tex]\[ \frac{1}{2197} \approx 0.0004551661356395084 \][/tex]

So, the number by which we need to multiply [tex]\( 13^{-6} \)[/tex] is approximately:

[tex]\[ \boxed{0.0004551661356395084} \][/tex]

Other Questions