The volume of a spherical ball is [tex]5000 \, \text{cm}^3[/tex]. What is the radius of the ball, correct to one decimal place? (Use [tex]\pi = 3.14[/tex].) (1 mark)

[tex]
\begin{array}{l}
V = \frac{4}{3} \pi r^3 \\
5000 = \frac{4}{3} \times 3.14 \times r^3 \\
5000 = 4.18667 \times r^3 \\
r^3 = \frac{5000}{4.18667} \\
r^3 \approx 1194.4 \\
r \approx 10.6 \, \text{cm}
\end{array}
[/tex]



Answer :

To find the radius of a spherical ball given its volume, we can use the formula for the volume of a sphere:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

### Step-by-Step Solution:

1. Identify the Given Values:
- Volume ([tex]\( V \)[/tex]) of the ball is [tex]\( 5000 \, \text{cm}^3 \)[/tex].
- The value of [tex]\( \pi \)[/tex] is [tex]\( 3.14 \)[/tex].

2. Write the Volume Formula:
[tex]\[ 5000 = \frac{4}{3} \pi r^3 \][/tex]

3. Rearrange the Formula to Solve for [tex]\( r^3 \)[/tex]:
Multiply both sides by [tex]\( \frac{3}{4} \)[/tex] to isolate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{3 \cdot 5000}{4 \pi} \][/tex]

4. Substitute the Value of [tex]\( \pi \)[/tex]:
[tex]\[ r^3 = \frac{3 \cdot 5000}{4 \cdot 3.14} \][/tex]

5. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{15000}{12.56} \][/tex]
[tex]\[ r^3 \approx 1194.2675159235669 \][/tex]

6. Solve for [tex]\( r \)[/tex]:
Take the cube root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt[3]{1194.2675159235669} \][/tex]
[tex]\[ r \approx 10.609637360523415 \][/tex]

7. Round to One Decimal Place:
We round the result to one decimal place:
[tex]\[ r \approx 10.6 \, \text{cm} \][/tex]

### Final Answer:
The radius of the spherical ball is approximately [tex]\( 10.6 \, \text{cm} \)[/tex].