Answer :
Sure, let's go through the solution step-by-step for each part of the question.
### Given Data:
1. Processing Times (in hours/item):
- Aram cola: 0.5 hours/item
- Mango juice: 0.10 hours/item
- Uhai drinking water: 0.02 hours/item
2. Setup Times (in hours):
- Aram cola: 0.05 hours
- Mango juice: 0.25 hours
- Uhai drinking water: 4 hours
3. Lot Sizes (in units):
- Aram cola: 240 units
- Mango juice: 180 units
- Uhai drinking water: 100 units
4. Demand Forecasts (units per year):
- Aram cola: 80000 units/year
- Mango juice: 60000 units/year
- Uhai drinking water: 120000 units/year
5. Operational Parameters:
- Shifts per day: 2
- Hours per shift: 8
- Days per week: 5
- Weeks per year: 50
- Capacity cushion: 10%
### a. Calculate Total Available Hours Per Year:
First, let’s calculate the total available hours per year:
[tex]\[ \text{Total available hours/year} = \text{shifts/day} \times \text{hours/shift} \times \text{days/week} \times \text{weeks/year} \][/tex]
[tex]\[ \text{Total available hours/year} = 2 \times 8 \times 5 \times 50 = 4000 \text{ hours/year} \][/tex]
### b. Calculate the Total Time Required for Each Product:
To calculate the total time required for each product, we need to find the time to produce one unit:
[tex]\[ \text{Time per unit} = \text{Processing time} + \frac{\text{Setup time}}{\text{Lot size}} \][/tex]
Now, calculate this for each product:
1. Aram Cola:
[tex]\[ \text{Time per unit} = 0.5 + \frac{0.05}{240} = 0.5 + 0.0002083333 = 0.5002083333 \text{ hours/unit} \][/tex]
[tex]\[ \text{Total time required} = 0.5002083333 \times 80000 = 40016.66666667 \text{ hours} \][/tex]
2. Mango Juice:
[tex]\[ \text{Time per unit} = 0.10 + \frac{0.25}{180} = 0.10 + 0.0013888889 = 0.1013888889 \text{ hours/unit} \][/tex]
[tex]\[ \text{Total time required} = 0.1013888889 \times 60000 = 6083.33333333 \text{ hours} \][/tex]
3. Uhai Drinking Water:
[tex]\[ \text{Time per unit} = 0.02 + \frac{4}{100} = 0.02 + 0.04 = 0.06 \text{ hours/unit} \][/tex]
[tex]\[ \text{Total time required} = 0.06 \times 120000 = 7200 \text{ hours} \][/tex]
### c. Calculate the Total Time Required for All Products:
[tex]\[ \text{Total time for all products} = 40016.66666667 + 6083.33333333 + 7200 = 53300 \text{ hours} \][/tex]
### d. Adjust for Capacity Cushion:
Considering a capacity cushion of 10%, we adjust the total time:
[tex]\[ \text{Total time with capacity cushion} = \frac{\text{Total time for all products}}{1 - 0.10} = \frac{53300}{0.90} = 59222.2222222 \text{ hours} \][/tex]
### e. Calculate the Number of Machines Needed:
To find the number of machines needed:
[tex]\[ \text{Number of machines needed} = \frac{\text{Total time with capacity cushion}}{\text{Total available hours per year}} \][/tex]
[tex]\[ \text{Number of machines needed} = \frac{59222.2222222}{4000} = 14.8055555556 \][/tex]
We need approximately 14.81 machines. Since you cannot have a fraction of a machine, you would need 15 machines.
### f. Calculate the Capacity Gap:
Finally, if the current operation has two machines, the capacity gap is:
[tex]\[ \text{Capacity gap} = \text{Current number of machines} - \text{Number of machines needed} \][/tex]
[tex]\[ \text{Capacity gap} = 2 - 14.8055555556 = -12.8055555556 \][/tex]
This means there is a shortage of approximately 12.81 machines.
### Conclusion:
- Total Time Required for All Products: 53300 hours
- Total Time with Capacity Cushion: 59222.22 hours
- Number of Machines Needed: 14.81 (needs to be rounded up to 15)
- Capacity Gap: -12.81 machines (indicating the need for 13 more machines)
These calculations provide a complete capacity plan for the critical operation in the company.
### Given Data:
1. Processing Times (in hours/item):
- Aram cola: 0.5 hours/item
- Mango juice: 0.10 hours/item
- Uhai drinking water: 0.02 hours/item
2. Setup Times (in hours):
- Aram cola: 0.05 hours
- Mango juice: 0.25 hours
- Uhai drinking water: 4 hours
3. Lot Sizes (in units):
- Aram cola: 240 units
- Mango juice: 180 units
- Uhai drinking water: 100 units
4. Demand Forecasts (units per year):
- Aram cola: 80000 units/year
- Mango juice: 60000 units/year
- Uhai drinking water: 120000 units/year
5. Operational Parameters:
- Shifts per day: 2
- Hours per shift: 8
- Days per week: 5
- Weeks per year: 50
- Capacity cushion: 10%
### a. Calculate Total Available Hours Per Year:
First, let’s calculate the total available hours per year:
[tex]\[ \text{Total available hours/year} = \text{shifts/day} \times \text{hours/shift} \times \text{days/week} \times \text{weeks/year} \][/tex]
[tex]\[ \text{Total available hours/year} = 2 \times 8 \times 5 \times 50 = 4000 \text{ hours/year} \][/tex]
### b. Calculate the Total Time Required for Each Product:
To calculate the total time required for each product, we need to find the time to produce one unit:
[tex]\[ \text{Time per unit} = \text{Processing time} + \frac{\text{Setup time}}{\text{Lot size}} \][/tex]
Now, calculate this for each product:
1. Aram Cola:
[tex]\[ \text{Time per unit} = 0.5 + \frac{0.05}{240} = 0.5 + 0.0002083333 = 0.5002083333 \text{ hours/unit} \][/tex]
[tex]\[ \text{Total time required} = 0.5002083333 \times 80000 = 40016.66666667 \text{ hours} \][/tex]
2. Mango Juice:
[tex]\[ \text{Time per unit} = 0.10 + \frac{0.25}{180} = 0.10 + 0.0013888889 = 0.1013888889 \text{ hours/unit} \][/tex]
[tex]\[ \text{Total time required} = 0.1013888889 \times 60000 = 6083.33333333 \text{ hours} \][/tex]
3. Uhai Drinking Water:
[tex]\[ \text{Time per unit} = 0.02 + \frac{4}{100} = 0.02 + 0.04 = 0.06 \text{ hours/unit} \][/tex]
[tex]\[ \text{Total time required} = 0.06 \times 120000 = 7200 \text{ hours} \][/tex]
### c. Calculate the Total Time Required for All Products:
[tex]\[ \text{Total time for all products} = 40016.66666667 + 6083.33333333 + 7200 = 53300 \text{ hours} \][/tex]
### d. Adjust for Capacity Cushion:
Considering a capacity cushion of 10%, we adjust the total time:
[tex]\[ \text{Total time with capacity cushion} = \frac{\text{Total time for all products}}{1 - 0.10} = \frac{53300}{0.90} = 59222.2222222 \text{ hours} \][/tex]
### e. Calculate the Number of Machines Needed:
To find the number of machines needed:
[tex]\[ \text{Number of machines needed} = \frac{\text{Total time with capacity cushion}}{\text{Total available hours per year}} \][/tex]
[tex]\[ \text{Number of machines needed} = \frac{59222.2222222}{4000} = 14.8055555556 \][/tex]
We need approximately 14.81 machines. Since you cannot have a fraction of a machine, you would need 15 machines.
### f. Calculate the Capacity Gap:
Finally, if the current operation has two machines, the capacity gap is:
[tex]\[ \text{Capacity gap} = \text{Current number of machines} - \text{Number of machines needed} \][/tex]
[tex]\[ \text{Capacity gap} = 2 - 14.8055555556 = -12.8055555556 \][/tex]
This means there is a shortage of approximately 12.81 machines.
### Conclusion:
- Total Time Required for All Products: 53300 hours
- Total Time with Capacity Cushion: 59222.22 hours
- Number of Machines Needed: 14.81 (needs to be rounded up to 15)
- Capacity Gap: -12.81 machines (indicating the need for 13 more machines)
These calculations provide a complete capacity plan for the critical operation in the company.