Solve the system of equations:

[tex]\[ \begin{array}{l}
7x - 5y = 9 \\
-6x + 5y = -2
\end{array} \][/tex]

A. [tex]\( x = 7, y = 8 \)[/tex]
B. [tex]\( x = -2, y = -2 \)[/tex]
C. [tex]\( x = 3, y = 4 \)[/tex]
D. [tex]\( x = 5, y = 5 \)[/tex]



Answer :

To solve the given system of linear equations:

[tex]\[ \begin{array}{l} 7x - 5y = 9 \\ -6x + 5y = -2 \end{array} \][/tex]

we can use the method of elimination or substitution. Here, we will use the elimination method to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

First, let's add the two equations together to eliminate [tex]\( y \)[/tex]:

[tex]\[ (7x - 5y) + (-6x + 5y) = 9 + (-2) \][/tex]

Simplify:

[tex]\[ 7x - 5y - 6x + 5y = 7 \][/tex]

Combine like terms:

[tex]\[ x = 7 \][/tex]

Now that we have [tex]\( x = 7 \)[/tex], we can substitute this value back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the first equation:

[tex]\[ 7(7) - 5y = 9 \][/tex]

Simplify the left-hand side:

[tex]\[ 49 - 5y = 9 \][/tex]

Subtract 49 from both sides:

[tex]\[ -5y = 9 - 49 \][/tex]

[tex]\[ -5y = -40 \][/tex]

Divide both sides by -5:

[tex]\[ y = 8 \][/tex]

So, the solution to the system of equations is [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex].

Therefore, the correct answer is:

(A) [tex]\( x = 7, y = 8 \)[/tex]