What is the percent abundance of post-1982 pennies in the data sample?

\begin{tabular}{|c|c|c|c|}
\hline
Sample & \begin{tabular}{c}
Number of \\
Pennies
\end{tabular} & \begin{tabular}{c}
Abundance \\
[tex]$(\%)$[/tex]
\end{tabular} & \begin{tabular}{c}
Average \\
Mass (g)
\end{tabular} \\
\hline
Pre-1982 & 8 & 40 & 3.1 \\
\hline
Post-1982 & 12 & [?] & 2.5 \\
\hline
Total & 20 & 100 & \\
\hline
\end{tabular}



Answer :

To determine the percent abundance of post-1982 pennies in the given data sample, follow these steps:

1. Understand the given data:
- Number of pre-1982 pennies: [tex]\( 8 \)[/tex]
- Number of post-1982 pennies: [tex]\( 12 \)[/tex]
- Total number of pennies in the sample: [tex]\( 20 \)[/tex]

2. Write the formula for percent abundance:
- Percent abundance of a specific group = [tex]\(\frac{\text{Number of items in the specific group}}{\text{Total number of items}} \times 100\)[/tex]

3. Substitute the values for the post-1982 pennies:
- Number of post-1982 pennies: [tex]\( 12 \)[/tex]
- Total number of pennies: [tex]\( 20 \)[/tex]

[tex]\[\text{Percent abundance of post-1982 pennies} = \frac{12}{20} \times 100\][/tex]

4. Simplify the fraction:
- [tex]\(\frac{12}{20}\)[/tex] simplifies to [tex]\(0.6\)[/tex]

5. Multiply by 100 to convert to a percentage:
[tex]\[0.6 \times 100 = 60\%\][/tex]

So, the percent abundance of post-1982 pennies in the data sample is [tex]\(60\%\)[/tex].