What is the weighted average of a bean in the sample data given?

\begin{tabular}{|c|c|c|c|}
\hline Item & \begin{tabular}{c}
Percent \\
Abundance
\end{tabular} & \begin{tabular}{c}
Mass of one \\
bean (g)
\end{tabular} & \begin{tabular}{c}
Weighted \\
Average
\end{tabular} \\
\hline \begin{tabular}{c}
Black Eyed \\
Peas
\end{tabular} & 82 & 1.32 & \\
\hline \begin{tabular}{c}
Cannellini \\
Beans
\end{tabular} & 18 & 2.94 & \\
\hline
\end{tabular}



Answer :

To find the weighted average of the mass of a bean in the given sample data, you need to take into account both the abundance and the mass of each type of bean. Here is the step-by-step solution for calculating the weighted average:

1. Understand the given data:
- Black Eyed Peas:
- Percent Abundance: 82%
- Mass of one bean: 1.32 grams
- Cannellini Beans:
- Percent Abundance: 18%
- Mass of one bean: 2.94 grams

2. Formula for weighted average:
The weighted average [tex]\( \text{W.A.} \)[/tex] is given by:
[tex]\[ \text{W.A.} = \frac{(P_1 \times M_1) + (P_2 \times M_2)}{P_1 + P_2} \][/tex]
where [tex]\( P_1, P_2 \)[/tex] are the percent abundances and [tex]\( M_1, M_2 \)[/tex] are the masses of each type of bean.

3. Substitute the given values into the formula:
[tex]\[ P_1 = 82, \quad M_1 = 1.32 \, \text{grams} \][/tex]
[tex]\[ P_2 = 18, \quad M_2 = 2.94 \, \text{grams} \][/tex]

Plug these values into the formula:
[tex]\[ \text{W.A.} = \frac{(82 \times 1.32) + (18 \times 2.94)}{82 + 18} \][/tex]

4. Calculate the weighted contributions:
[tex]\[ 82 \times 1.32 = 108.24 \][/tex]
[tex]\[ 18 \times 2.94 = 52.92 \][/tex]

5. Add the weighted contributions:
[tex]\[ 108.24 + 52.92 = 161.16 \][/tex]

6. Sum of the abundances:
[tex]\[ 82 + 18 = 100 \][/tex]

7. Divide the weighted contributions by the total abundance:
[tex]\[ \text{W.A.} = \frac{161.16}{100} = 1.6116 \][/tex]

8. Final weighted average:
[tex]\[ \boxed{1.6116 \, \text{grams}} \][/tex]

So, the weighted average mass of a bean in this sample data is 1.6116 grams.