What is the "percent abundance" of the cannellini beans in this sample?

\begin{tabular}{|c|c|c|c|c|}
\hline
Sample & \begin{tabular}{c}
Number \\
of Beans
\end{tabular} & \begin{tabular}{c}
Abundance \\
[tex]$( \% )$[/tex]
\end{tabular} & \begin{tabular}{c}
Mass \\
[tex]$( g )$[/tex]
\end{tabular} & \begin{tabular}{c}
Weighted \\
Average [tex]$( g )$[/tex]
\end{tabular} \\
\hline
\begin{tabular}{c}
Black \\
Eyed Peas
\end{tabular} & 187 & & 1.3 & \\
\hline
\begin{tabular}{c}
Cannellini \\
Beans
\end{tabular} & 113 & [?] & 2.9 & 1.9 \\
\hline
\end{tabular}



Answer :

Let's go through the process to find the percent abundance of the cannellini beans in this sample.

1. Determine the total number of beans:
- There are [tex]\(187\)[/tex] black-eyed peas.
- There are [tex]\(113\)[/tex] cannellini beans.
- The total number of beans is the sum of these two quantities:
[tex]\[ 187 + 113 = 300 \][/tex]

2. Calculate the percent abundance of the cannellini beans:
The percent abundance is given by the ratio of the number of cannellini beans to the total number of beans, multiplied by [tex]\(100\)[/tex]:
[tex]\[ \frac{\text{Number of cannellini beans}}{\text{Total number of beans}} \times 100 \][/tex]
Substituting in the numbers:
[tex]\[ \frac{113}{300} \times 100 \approx 37.67 \% \][/tex]

Therefore, the percent abundance of the cannellini beans in this sample is approximately [tex]\(37.67\%\)[/tex].