You determine the percent abundance of each length of nail and record it in the data table below.

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Sample \\
Type
\end{tabular} & \begin{tabular}{c}
Number \\
of Nails
\end{tabular} & \begin{tabular}{c}
Abundance \\
[tex]$(\%)$[/tex]
\end{tabular} & \begin{tabular}{c}
Nail Length \\
[tex]$( cm )$[/tex]
\end{tabular} \\
\hline Short nail & 67 & 70.5 & 2.5 \\
\hline Medium nail & 18 & 19.0 & 5.0 \\
\hline Long nail & 10 & 10.5 & 7.5 \\
\hline
\end{tabular}

What is the weighted average length, in cm, of a nail from the carpenter's box?



Answer :

To determine the weighted average length of the nails from the carpenter's box using the provided data, follow these steps:

1. Identify the Relevant Data:
- For short nails:
- Abundance: [tex]\(70.5\%\)[/tex]
- Length: [tex]\(2.5 \, \text{cm}\)[/tex]
- For medium nails:
- Abundance: [tex]\(19.0\%\)[/tex]
- Length: [tex]\(5.0 \, \text{cm}\)[/tex]
- For long nails:
- Abundance: [tex]\(10.5\%\)[/tex]
- Length: [tex]\(7.5 \, \text{cm}\)[/tex]

2. Convert Percentages to Decimal Form:
- Short nail abundance: [tex]\(70.5\% = 0.705\)[/tex]
- Medium nail abundance: [tex]\(19.0\% = 0.190\)[/tex]
- Long nail abundance: [tex]\(10.5\% = 0.105\)[/tex]

3. Calculate the Total Abundance:
[tex]\[ \text{Total Abundance} = 0.705 + 0.190 + 0.105 = 1.00 \][/tex]

4. Compute the Sum of Weighted Lengths:
- The weighted length for short nails:
[tex]\[ (0.705 \times 2.5) = 1.7625 \, \text{cm} \][/tex]
- The weighted length for medium nails:
[tex]\[ (0.190 \times 5.0) = 0.95 \, \text{cm} \][/tex]
- The weighted length for long nails:
[tex]\[ (0.105 \times 7.5) = 0.7875 \, \text{cm} \][/tex]

5. Sum the Weighted Lengths:
[tex]\[ 1.7625 + 0.95 + 0.7875 = 3.5 \, \text{cm} \][/tex]

6. Calculate the Weighted Average Length:
Since the total abundance is 1.00, the weighted average length is the sum of the weighted lengths:
[tex]\[ \text{Weighted Average Length} = \frac{3.5}{1.00} = 3.5 \, \text{cm} \][/tex]

Thus, the weighted average length of a nail from the carpenter's box is [tex]\( 3.5 \, \text{cm} \)[/tex].