Answer :
Certainly! Let's solve the given equations step by step.
Given equations:
1. [tex]\(\frac{3}{4}(e-1)\)[/tex]
2. [tex]\(\frac{5}{3}(e-8)\)[/tex]
3. [tex]\(\frac{8}{3}(6-k) \times \frac{5}{12}\)[/tex]
We need to determine the values of [tex]\(e\)[/tex] and [tex]\(k\)[/tex] that satisfy these equations. Let's start by setting the first two expressions equal to each other:
[tex]\[ \frac{3}{4}(e-1) = \frac{5}{3}(e-8) \][/tex]
### Solving for [tex]\(e\)[/tex]:
1. Cross-multiply to clear the fractions:
[tex]\[ 3 \times 3(e-1) = 4 \times 5(e-8) \][/tex]
[tex]\[ 9(e-1) = 20(e-8) \][/tex]
2. Distribute and simplify:
[tex]\[ 9e - 9 = 20e - 160 \][/tex]
3. Isolate [tex]\(e\)[/tex]:
[tex]\[ 9e - 20e = -160 + 9 \][/tex]
[tex]\[ -11e = -151 \][/tex]
[tex]\[ e = \frac{151}{11} \][/tex]
[tex]\[ e =13.727... \approx 13.727 \][/tex]
Now let's relate the second and third expressions:
[tex]\[ \frac{5}{3}(e-8) = \frac{8}{3}(6-k) \times \frac{5}{12} \][/tex]
### Simplify the third expression:
1. Simplify the fraction inside the third expression:
[tex]\[ \frac{8}{3}(6-k) \times \frac{5}{12} = \frac{8 \times 5}{3 \times 12}(6-k) = \frac{40}{36}(6-k) = \frac{10}{9}(6-k) \][/tex]
So, we have:
[tex]\[ \frac{5}{3}(e-8) = \frac{10}{9}(6-k) \][/tex]
2. Cross-multiply again to clear the fractions:
[tex]\[ 5 \times 9(e-8) = 3 \times 10(6-k) \][/tex]
[tex]\[ 45(e-8) = 30(6-k) \][/tex]
3. Distribute and simplify:
[tex]\[ 45e - 360 = 180 - 30k \][/tex]
4. Isolate [tex]\(k\)[/tex]:
[tex]\[ 45e - 360 - 180 = -30k \][/tex]
[tex]\[ 45e - 540 = -30k \][/tex]
[tex]\[ 30k = 540 - 45e \][/tex]
[tex]\[ k = \frac{540 - 45e}{30} \][/tex]
Now, substitute the value of [tex]\(e\)[/tex] into the equation:
[tex]\[ e = \frac{151}{11} \][/tex]
5. Substitute [tex]\(e\)[/tex] and solve for [tex]\(k\)[/tex]:
1.
[tex]\[ k = \frac{540 - 45 \times \frac{151}{11}}{30} \][/tex]
2.
[tex]\[ k = \frac{540 - \frac{6795}{11}}{30} \][/tex]
[tex]\[ k = \frac{540 \times 11 - 6795}{30 \times 11} \][/tex]
[tex]\[ k = \frac{5940 - 6795}{330} \][/tex]
[tex]\[ k = \frac{-855}{330} \][/tex]
[tex]\[ k \approx -2.591 \][/tex]
Hence, the solutions are:
[tex]\[ e \approx 13.727,\quad k \approx -2.591 \][/tex]
Given equations:
1. [tex]\(\frac{3}{4}(e-1)\)[/tex]
2. [tex]\(\frac{5}{3}(e-8)\)[/tex]
3. [tex]\(\frac{8}{3}(6-k) \times \frac{5}{12}\)[/tex]
We need to determine the values of [tex]\(e\)[/tex] and [tex]\(k\)[/tex] that satisfy these equations. Let's start by setting the first two expressions equal to each other:
[tex]\[ \frac{3}{4}(e-1) = \frac{5}{3}(e-8) \][/tex]
### Solving for [tex]\(e\)[/tex]:
1. Cross-multiply to clear the fractions:
[tex]\[ 3 \times 3(e-1) = 4 \times 5(e-8) \][/tex]
[tex]\[ 9(e-1) = 20(e-8) \][/tex]
2. Distribute and simplify:
[tex]\[ 9e - 9 = 20e - 160 \][/tex]
3. Isolate [tex]\(e\)[/tex]:
[tex]\[ 9e - 20e = -160 + 9 \][/tex]
[tex]\[ -11e = -151 \][/tex]
[tex]\[ e = \frac{151}{11} \][/tex]
[tex]\[ e =13.727... \approx 13.727 \][/tex]
Now let's relate the second and third expressions:
[tex]\[ \frac{5}{3}(e-8) = \frac{8}{3}(6-k) \times \frac{5}{12} \][/tex]
### Simplify the third expression:
1. Simplify the fraction inside the third expression:
[tex]\[ \frac{8}{3}(6-k) \times \frac{5}{12} = \frac{8 \times 5}{3 \times 12}(6-k) = \frac{40}{36}(6-k) = \frac{10}{9}(6-k) \][/tex]
So, we have:
[tex]\[ \frac{5}{3}(e-8) = \frac{10}{9}(6-k) \][/tex]
2. Cross-multiply again to clear the fractions:
[tex]\[ 5 \times 9(e-8) = 3 \times 10(6-k) \][/tex]
[tex]\[ 45(e-8) = 30(6-k) \][/tex]
3. Distribute and simplify:
[tex]\[ 45e - 360 = 180 - 30k \][/tex]
4. Isolate [tex]\(k\)[/tex]:
[tex]\[ 45e - 360 - 180 = -30k \][/tex]
[tex]\[ 45e - 540 = -30k \][/tex]
[tex]\[ 30k = 540 - 45e \][/tex]
[tex]\[ k = \frac{540 - 45e}{30} \][/tex]
Now, substitute the value of [tex]\(e\)[/tex] into the equation:
[tex]\[ e = \frac{151}{11} \][/tex]
5. Substitute [tex]\(e\)[/tex] and solve for [tex]\(k\)[/tex]:
1.
[tex]\[ k = \frac{540 - 45 \times \frac{151}{11}}{30} \][/tex]
2.
[tex]\[ k = \frac{540 - \frac{6795}{11}}{30} \][/tex]
[tex]\[ k = \frac{540 \times 11 - 6795}{30 \times 11} \][/tex]
[tex]\[ k = \frac{5940 - 6795}{330} \][/tex]
[tex]\[ k = \frac{-855}{330} \][/tex]
[tex]\[ k \approx -2.591 \][/tex]
Hence, the solutions are:
[tex]\[ e \approx 13.727,\quad k \approx -2.591 \][/tex]