Fill in the boxes to show how to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.

Use function compositions to determine if [tex]\( f(x) = 3x - 12 \)[/tex] and [tex]\( g(x) = \frac{x+12}{3} \)[/tex] are inverses of each other.

Step 1: Check to see if [tex]\( f(g(x)) = x \)[/tex].

[tex]\[
f(g(x)) = f\left(\frac{x+12}{3}\right) = 3\left(\frac{x+12}{3}\right) - 12
\][/tex]
[tex]\[
f(g(x)) = x + 12 - 12
\][/tex]
[tex]\[
f(g(x)) = x
\][/tex]

Step 2: Check to see if [tex]\( g(f(x)) = x \)[/tex].

[tex]\[
g(f(x)) = g(3x - 12) = \frac{(3x - 12) + 12}{3}
\][/tex]
[tex]\[
g(f(x)) = \frac{3x - 12 + 12}{3}
\][/tex]
[tex]\[
g(f(x)) = \frac{3x}{3}
\][/tex]
[tex]\[
g(f(x)) = x
\][/tex]



Answer :

To verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other, we need to confirm that composing the functions in both orders yields the identity function [tex]\( x \)[/tex]. That means we need to show that [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex].

### Step 1: Check to see if [tex]\( f(g(x)) = x \)[/tex].

Given [tex]\( f(x) = 3x - 12 \)[/tex] and [tex]\( g(x) = \frac{1}{3}x + 4 \)[/tex], we first compose [tex]\( f \)[/tex] and [tex]\( g \)[/tex]:

[tex]\[ f(g(x)) = f\left(\frac{1}{3}x + 4\right) \][/tex]

Now, we substitute [tex]\( \frac{1}{3}x + 4 \)[/tex] into the function [tex]\( f \)[/tex]:

[tex]\[ f\left(\frac{1}{3}x + 4\right) = 3\left(\frac{1}{3}x + 4\right) - 12 \][/tex]

Next, we distribute the 3:

[tex]\[ 3\left(\frac{1}{3}x + 4\right) = 3 \cdot \frac{1}{3}x + 3 \cdot 4 = x + 12 \][/tex]

Then we subtract 12:

[tex]\[ x + 12 - 12 = x \][/tex]

Thus,

[tex]\[ f(g(x)) = x \][/tex]

### Step 2: Check to see if [tex]\( g(f(x)) = x \)[/tex].

Now we compose [tex]\( g \)[/tex] and [tex]\( f \)[/tex]:

[tex]\[ g(f(x)) = g(3x - 12) \][/tex]

We substitute [tex]\( 3x - 12 \)[/tex] into the function [tex]\( g \)[/tex]:

[tex]\[ g(3x - 12) = \frac{1}{3}(3x - 12) + 4 \][/tex]

Next, we distribute the [tex]\( \frac{1}{3} \)[/tex]:

[tex]\[ \frac{1}{3}(3x - 12) = \frac{1}{3} \cdot 3x - \frac{1}{3} \cdot 12 = x - 4 \][/tex]

Then we add 4:

[tex]\[ x - 4 + 4 = x \][/tex]

So,

[tex]\[ g(f(x)) = x \][/tex]

Having confirmed both compositions result in the identity function, we can conclude that [tex]\( f(x) = 3x - 12 \)[/tex] and [tex]\( g(x) = \frac{1}{3}x + 4 \)[/tex] are indeed inverses of each other.